Polytope of Type {6,4,20,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,20,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,205034)
Rank : 5
Schlafli Type : {6,4,20,2}
Number of vertices, edges, etc : 6, 12, 40, 20, 2
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,2,20,2}*960, {6,4,10,2}*960
   3-fold quotients : {2,4,20,2}*640
   4-fold quotients : {3,2,20,2}*480, {6,2,10,2}*480
   5-fold quotients : {6,4,4,2}*384
   6-fold quotients : {2,2,20,2}*320, {2,4,10,2}*320
   8-fold quotients : {3,2,10,2}*240, {6,2,5,2}*240
   10-fold quotients : {6,2,4,2}*192, {6,4,2,2}*192a
   12-fold quotients : {2,2,10,2}*160
   15-fold quotients : {2,4,4,2}*128
   16-fold quotients : {3,2,5,2}*120
   20-fold quotients : {3,2,4,2}*96, {6,2,2,2}*96
   24-fold quotients : {2,2,5,2}*80
   30-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
   40-fold quotients : {3,2,2,2}*48
   60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)( 23, 28)
( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 51, 56)
( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 66, 71)( 67, 72)( 68, 73)( 69, 74)
( 70, 75)( 81, 86)( 82, 87)( 83, 88)( 84, 89)( 85, 90)( 96,101)( 97,102)
( 98,103)( 99,104)(100,105)(111,116)(112,117)(113,118)(114,119)(115,120);;
s1 := (  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 16, 21)( 17, 22)( 18, 23)
( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)( 46, 51)
( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 81)( 62, 82)( 63, 83)( 64, 84)
( 65, 85)( 66, 76)( 67, 77)( 68, 78)( 69, 79)( 70, 80)( 71, 86)( 72, 87)
( 73, 88)( 74, 89)( 75, 90)( 91,111)( 92,112)( 93,113)( 94,114)( 95,115)
( 96,106)( 97,107)( 98,108)( 99,109)(100,110)(101,116)(102,117)(103,118)
(104,119)(105,120);;
s2 := (  1, 61)(  2, 65)(  3, 64)(  4, 63)(  5, 62)(  6, 66)(  7, 70)(  8, 69)
(  9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)( 16, 76)
( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)( 24, 83)
( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31, 91)( 32, 95)
( 33, 94)( 34, 93)( 35, 92)( 36, 96)( 37,100)( 38, 99)( 39, 98)( 40, 97)
( 41,101)( 42,105)( 43,104)( 44,103)( 45,102)( 46,106)( 47,110)( 48,109)
( 49,108)( 50,107)( 51,111)( 52,115)( 53,114)( 54,113)( 55,112)( 56,116)
( 57,120)( 58,119)( 59,118)( 60,117);;
s3 := (  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)( 18, 20)
( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)( 38, 40)
( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)( 58, 60)
( 61, 92)( 62, 91)( 63, 95)( 64, 94)( 65, 93)( 66, 97)( 67, 96)( 68,100)
( 69, 99)( 70, 98)( 71,102)( 72,101)( 73,105)( 74,104)( 75,103)( 76,107)
( 77,106)( 78,110)( 79,109)( 80,108)( 81,112)( 82,111)( 83,115)( 84,114)
( 85,113)( 86,117)( 87,116)( 88,120)( 89,119)( 90,118);;
s4 := (121,122);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(122)!(  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)
( 23, 28)( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)
( 51, 56)( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 66, 71)( 67, 72)( 68, 73)
( 69, 74)( 70, 75)( 81, 86)( 82, 87)( 83, 88)( 84, 89)( 85, 90)( 96,101)
( 97,102)( 98,103)( 99,104)(100,105)(111,116)(112,117)(113,118)(114,119)
(115,120);
s1 := Sym(122)!(  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 16, 21)( 17, 22)
( 18, 23)( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)
( 46, 51)( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 81)( 62, 82)( 63, 83)
( 64, 84)( 65, 85)( 66, 76)( 67, 77)( 68, 78)( 69, 79)( 70, 80)( 71, 86)
( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,111)( 92,112)( 93,113)( 94,114)
( 95,115)( 96,106)( 97,107)( 98,108)( 99,109)(100,110)(101,116)(102,117)
(103,118)(104,119)(105,120);
s2 := Sym(122)!(  1, 61)(  2, 65)(  3, 64)(  4, 63)(  5, 62)(  6, 66)(  7, 70)
(  8, 69)(  9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)
( 16, 76)( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)
( 24, 83)( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31, 91)
( 32, 95)( 33, 94)( 34, 93)( 35, 92)( 36, 96)( 37,100)( 38, 99)( 39, 98)
( 40, 97)( 41,101)( 42,105)( 43,104)( 44,103)( 45,102)( 46,106)( 47,110)
( 48,109)( 49,108)( 50,107)( 51,111)( 52,115)( 53,114)( 54,113)( 55,112)
( 56,116)( 57,120)( 58,119)( 59,118)( 60,117);
s3 := Sym(122)!(  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)
( 18, 20)( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)
( 38, 40)( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)
( 58, 60)( 61, 92)( 62, 91)( 63, 95)( 64, 94)( 65, 93)( 66, 97)( 67, 96)
( 68,100)( 69, 99)( 70, 98)( 71,102)( 72,101)( 73,105)( 74,104)( 75,103)
( 76,107)( 77,106)( 78,110)( 79,109)( 80,108)( 81,112)( 82,111)( 83,115)
( 84,114)( 85,113)( 86,117)( 87,116)( 88,120)( 89,119)( 90,118);
s4 := Sym(122)!(121,122);
poly := sub<Sym(122)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope