include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,10,2}*480
if this polytope has a name.
Group : SmallGroup(480,1207)
Rank : 5
Schlafli Type : {6,2,10,2}
Number of vertices, edges, etc : 6, 6, 10, 10, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,2,10,2,2} of size 960
{6,2,10,2,3} of size 1440
{6,2,10,2,4} of size 1920
Vertex Figure Of :
{2,6,2,10,2} of size 960
{3,6,2,10,2} of size 1440
{4,6,2,10,2} of size 1920
{3,6,2,10,2} of size 1920
{4,6,2,10,2} of size 1920
{4,6,2,10,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,10,2}*240, {6,2,5,2}*240
3-fold quotients : {2,2,10,2}*160
4-fold quotients : {3,2,5,2}*120
5-fold quotients : {6,2,2,2}*96
6-fold quotients : {2,2,5,2}*80
10-fold quotients : {3,2,2,2}*48
15-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,2,10,2}*960, {6,2,20,2}*960, {6,2,10,4}*960, {6,4,10,2}*960
3-fold covers : {18,2,10,2}*1440, {6,2,10,6}*1440, {6,6,10,2}*1440a, {6,6,10,2}*1440c, {6,2,30,2}*1440
4-fold covers : {12,4,10,2}*1920, {6,2,20,4}*1920, {6,4,20,2}*1920, {6,4,10,4}*1920, {12,2,10,4}*1920, {12,2,20,2}*1920, {6,2,10,8}*1920, {6,8,10,2}*1920, {24,2,10,2}*1920, {6,2,40,2}*1920, {6,4,10,2}*1920
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 9,10)(11,12)(13,14)(15,16);;
s3 := ( 7,11)( 8, 9)(10,15)(12,13)(14,16);;
s4 := (17,18);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(18)!(3,4)(5,6);
s1 := Sym(18)!(1,5)(2,3)(4,6);
s2 := Sym(18)!( 9,10)(11,12)(13,14)(15,16);
s3 := Sym(18)!( 7,11)( 8, 9)(10,15)(12,13)(14,16);
s4 := Sym(18)!(17,18);
poly := sub<Sym(18)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope