include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,5,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,5,2}*240
if this polytope has a name.
Group : SmallGroup(240,202)
Rank : 5
Schlafli Type : {6,2,5,2}
Number of vertices, edges, etc : 6, 6, 5, 5, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,2,5,2,2} of size 480
{6,2,5,2,3} of size 720
{6,2,5,2,4} of size 960
{6,2,5,2,5} of size 1200
{6,2,5,2,6} of size 1440
{6,2,5,2,7} of size 1680
{6,2,5,2,8} of size 1920
Vertex Figure Of :
{2,6,2,5,2} of size 480
{3,6,2,5,2} of size 720
{4,6,2,5,2} of size 960
{3,6,2,5,2} of size 960
{4,6,2,5,2} of size 960
{4,6,2,5,2} of size 960
{4,6,2,5,2} of size 1440
{6,6,2,5,2} of size 1440
{6,6,2,5,2} of size 1440
{6,6,2,5,2} of size 1440
{8,6,2,5,2} of size 1920
{4,6,2,5,2} of size 1920
{6,6,2,5,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,5,2}*120
3-fold quotients : {2,2,5,2}*80
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,2,5,2}*480, {6,2,10,2}*480
3-fold covers : {18,2,5,2}*720, {6,2,15,2}*720
4-fold covers : {24,2,5,2}*960, {12,2,10,2}*960, {6,2,20,2}*960, {6,2,10,4}*960, {6,4,10,2}*960
5-fold covers : {6,2,25,2}*1200, {6,2,5,10}*1200, {6,10,5,2}*1200, {30,2,5,2}*1200
6-fold covers : {36,2,5,2}*1440, {18,2,10,2}*1440, {12,2,15,2}*1440, {6,2,10,6}*1440, {6,6,10,2}*1440a, {6,6,10,2}*1440c, {6,2,30,2}*1440
7-fold covers : {42,2,5,2}*1680, {6,2,35,2}*1680
8-fold covers : {48,2,5,2}*1920, {12,4,10,2}*1920, {6,2,20,4}*1920, {6,4,20,2}*1920, {6,4,10,4}*1920, {12,2,10,4}*1920, {12,2,20,2}*1920, {6,2,10,8}*1920, {6,8,10,2}*1920, {24,2,10,2}*1920, {6,2,40,2}*1920, {6,4,10,2}*1920
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8, 9)(10,11);;
s3 := ( 7, 8)( 9,10);;
s4 := (12,13);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(13)!(3,4)(5,6);
s1 := Sym(13)!(1,5)(2,3)(4,6);
s2 := Sym(13)!( 8, 9)(10,11);
s3 := Sym(13)!( 7, 8)( 9,10);
s4 := Sym(13)!(12,13);
poly := sub<Sym(13)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope