include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,6}*1944n
if this polytope has a name.
Group : SmallGroup(1944,2340)
Rank : 3
Schlafli Type : {18,6}
Number of vertices, edges, etc : 162, 486, 54
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {18,6}*648b, {18,6}*648i, {6,6}*648g
6-fold quotients : {18,6}*324a
9-fold quotients : {18,6}*216a, {18,6}*216b, {6,6}*216b, {6,6}*216d
18-fold quotients : {9,6}*108, {6,6}*108
27-fold quotients : {18,2}*72, {6,6}*72a, {6,6}*72b, {6,6}*72c
54-fold quotients : {9,2}*36, {3,6}*36, {6,3}*36
81-fold quotients : {2,6}*24, {6,2}*24
162-fold quotients : {2,3}*12, {3,2}*12
243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,22)(11,24)(12,23)(13,19)(14,21)(15,20)
(16,25)(17,27)(18,26)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)
(36,59)(37,76)(38,78)(39,77)(40,73)(41,75)(42,74)(43,79)(44,81)(45,80)(46,67)
(47,69)(48,68)(49,64)(50,66)(51,65)(52,70)(53,72)(54,71);;
s1 := ( 1,37)( 2,38)( 3,39)( 4,43)( 5,44)( 6,45)( 7,40)( 8,41)( 9,42)(10,28)
(11,29)(12,30)(13,34)(14,35)(15,36)(16,31)(17,32)(18,33)(19,49)(20,50)(21,51)
(22,46)(23,47)(24,48)(25,52)(26,53)(27,54)(55,64)(56,65)(57,66)(58,70)(59,71)
(60,72)(61,67)(62,68)(63,69)(73,76)(74,77)(75,78);;
s2 := ( 2, 3)( 5, 6)( 8, 9)(10,11)(13,14)(16,17)(19,21)(22,24)(25,27)(28,55)
(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,65)(38,64)(39,66)
(40,68)(41,67)(42,69)(43,71)(44,70)(45,72)(46,75)(47,74)(48,73)(49,78)(50,77)
(51,76)(52,81)(53,80)(54,79);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,22)(11,24)(12,23)(13,19)(14,21)
(15,20)(16,25)(17,27)(18,26)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)
(35,60)(36,59)(37,76)(38,78)(39,77)(40,73)(41,75)(42,74)(43,79)(44,81)(45,80)
(46,67)(47,69)(48,68)(49,64)(50,66)(51,65)(52,70)(53,72)(54,71);
s1 := Sym(81)!( 1,37)( 2,38)( 3,39)( 4,43)( 5,44)( 6,45)( 7,40)( 8,41)( 9,42)
(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)(16,31)(17,32)(18,33)(19,49)(20,50)
(21,51)(22,46)(23,47)(24,48)(25,52)(26,53)(27,54)(55,64)(56,65)(57,66)(58,70)
(59,71)(60,72)(61,67)(62,68)(63,69)(73,76)(74,77)(75,78);
s2 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(10,11)(13,14)(16,17)(19,21)(22,24)(25,27)
(28,55)(29,57)(30,56)(31,58)(32,60)(33,59)(34,61)(35,63)(36,62)(37,65)(38,64)
(39,66)(40,68)(41,67)(42,69)(43,71)(44,70)(45,72)(46,75)(47,74)(48,73)(49,78)
(50,77)(51,76)(52,81)(53,80)(54,79);
poly := sub<Sym(81)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope