include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,6}*648b
if this polytope has a name.
Group : SmallGroup(648,297)
Rank : 3
Schlafli Type : {18,6}
Number of vertices, edges, etc : 54, 162, 18
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{18,6,2} of size 1296
{18,6,3} of size 1944
Vertex Figure Of :
{2,18,6} of size 1296
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {18,6}*324a
3-fold quotients : {18,6}*216a, {6,6}*216b
6-fold quotients : {6,6}*108
9-fold quotients : {18,2}*72, {6,6}*72a
18-fold quotients : {9,2}*36
27-fold quotients : {2,6}*24, {6,2}*24
54-fold quotients : {2,3}*12, {3,2}*12
81-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {18,12}*1296a, {36,6}*1296b
3-fold covers : {18,18}*1944c, {54,6}*1944b, {18,6}*1944g, {18,18}*1944s, {18,18}*1944x, {18,6}*1944j, {54,6}*1944d, {54,6}*1944f, {18,6}*1944n
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 61)( 29, 63)( 30, 62)( 31, 58)
( 32, 60)( 33, 59)( 34, 55)( 35, 57)( 36, 56)( 37, 70)( 38, 72)( 39, 71)
( 40, 67)( 41, 69)( 42, 68)( 43, 64)( 44, 66)( 45, 65)( 46, 79)( 47, 81)
( 48, 80)( 49, 76)( 50, 78)( 51, 77)( 52, 73)( 53, 75)( 54, 74)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)
(103,106)(104,108)(105,107)(109,142)(110,144)(111,143)(112,139)(113,141)
(114,140)(115,136)(116,138)(117,137)(118,151)(119,153)(120,152)(121,148)
(122,150)(123,149)(124,145)(125,147)(126,146)(127,160)(128,162)(129,161)
(130,157)(131,159)(132,158)(133,154)(134,156)(135,155);;
s1 := ( 1, 28)( 2, 29)( 3, 30)( 4, 34)( 5, 35)( 6, 36)( 7, 31)( 8, 32)
( 9, 33)( 10, 48)( 11, 46)( 12, 47)( 13, 54)( 14, 52)( 15, 53)( 16, 51)
( 17, 49)( 18, 50)( 19, 38)( 20, 39)( 21, 37)( 22, 44)( 23, 45)( 24, 43)
( 25, 41)( 26, 42)( 27, 40)( 55, 61)( 56, 62)( 57, 63)( 64, 81)( 65, 79)
( 66, 80)( 67, 78)( 68, 76)( 69, 77)( 70, 75)( 71, 73)( 72, 74)( 82,109)
( 83,110)( 84,111)( 85,115)( 86,116)( 87,117)( 88,112)( 89,113)( 90,114)
( 91,129)( 92,127)( 93,128)( 94,135)( 95,133)( 96,134)( 97,132)( 98,130)
( 99,131)(100,119)(101,120)(102,118)(103,125)(104,126)(105,124)(106,122)
(107,123)(108,121)(136,142)(137,143)(138,144)(145,162)(146,160)(147,161)
(148,159)(149,157)(150,158)(151,156)(152,154)(153,155);;
s2 := ( 1, 91)( 2, 93)( 3, 92)( 4, 94)( 5, 96)( 6, 95)( 7, 97)( 8, 99)
( 9, 98)( 10, 82)( 11, 84)( 12, 83)( 13, 85)( 14, 87)( 15, 86)( 16, 88)
( 17, 90)( 18, 89)( 19,100)( 20,102)( 21,101)( 22,103)( 23,105)( 24,104)
( 25,106)( 26,108)( 27,107)( 28,118)( 29,120)( 30,119)( 31,121)( 32,123)
( 33,122)( 34,124)( 35,126)( 36,125)( 37,109)( 38,111)( 39,110)( 40,112)
( 41,114)( 42,113)( 43,115)( 44,117)( 45,116)( 46,127)( 47,129)( 48,128)
( 49,130)( 50,132)( 51,131)( 52,133)( 53,135)( 54,134)( 55,145)( 56,147)
( 57,146)( 58,148)( 59,150)( 60,149)( 61,151)( 62,153)( 63,152)( 64,136)
( 65,138)( 66,137)( 67,139)( 68,141)( 69,140)( 70,142)( 71,144)( 72,143)
( 73,154)( 74,156)( 75,155)( 76,157)( 77,159)( 78,158)( 79,160)( 80,162)
( 81,161);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(162)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 61)( 29, 63)( 30, 62)
( 31, 58)( 32, 60)( 33, 59)( 34, 55)( 35, 57)( 36, 56)( 37, 70)( 38, 72)
( 39, 71)( 40, 67)( 41, 69)( 42, 68)( 43, 64)( 44, 66)( 45, 65)( 46, 79)
( 47, 81)( 48, 80)( 49, 76)( 50, 78)( 51, 77)( 52, 73)( 53, 75)( 54, 74)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)
(101,102)(103,106)(104,108)(105,107)(109,142)(110,144)(111,143)(112,139)
(113,141)(114,140)(115,136)(116,138)(117,137)(118,151)(119,153)(120,152)
(121,148)(122,150)(123,149)(124,145)(125,147)(126,146)(127,160)(128,162)
(129,161)(130,157)(131,159)(132,158)(133,154)(134,156)(135,155);
s1 := Sym(162)!( 1, 28)( 2, 29)( 3, 30)( 4, 34)( 5, 35)( 6, 36)( 7, 31)
( 8, 32)( 9, 33)( 10, 48)( 11, 46)( 12, 47)( 13, 54)( 14, 52)( 15, 53)
( 16, 51)( 17, 49)( 18, 50)( 19, 38)( 20, 39)( 21, 37)( 22, 44)( 23, 45)
( 24, 43)( 25, 41)( 26, 42)( 27, 40)( 55, 61)( 56, 62)( 57, 63)( 64, 81)
( 65, 79)( 66, 80)( 67, 78)( 68, 76)( 69, 77)( 70, 75)( 71, 73)( 72, 74)
( 82,109)( 83,110)( 84,111)( 85,115)( 86,116)( 87,117)( 88,112)( 89,113)
( 90,114)( 91,129)( 92,127)( 93,128)( 94,135)( 95,133)( 96,134)( 97,132)
( 98,130)( 99,131)(100,119)(101,120)(102,118)(103,125)(104,126)(105,124)
(106,122)(107,123)(108,121)(136,142)(137,143)(138,144)(145,162)(146,160)
(147,161)(148,159)(149,157)(150,158)(151,156)(152,154)(153,155);
s2 := Sym(162)!( 1, 91)( 2, 93)( 3, 92)( 4, 94)( 5, 96)( 6, 95)( 7, 97)
( 8, 99)( 9, 98)( 10, 82)( 11, 84)( 12, 83)( 13, 85)( 14, 87)( 15, 86)
( 16, 88)( 17, 90)( 18, 89)( 19,100)( 20,102)( 21,101)( 22,103)( 23,105)
( 24,104)( 25,106)( 26,108)( 27,107)( 28,118)( 29,120)( 30,119)( 31,121)
( 32,123)( 33,122)( 34,124)( 35,126)( 36,125)( 37,109)( 38,111)( 39,110)
( 40,112)( 41,114)( 42,113)( 43,115)( 44,117)( 45,116)( 46,127)( 47,129)
( 48,128)( 49,130)( 50,132)( 51,131)( 52,133)( 53,135)( 54,134)( 55,145)
( 56,147)( 57,146)( 58,148)( 59,150)( 60,149)( 61,151)( 62,153)( 63,152)
( 64,136)( 65,138)( 66,137)( 67,139)( 68,141)( 69,140)( 70,142)( 71,144)
( 72,143)( 73,154)( 74,156)( 75,155)( 76,157)( 77,159)( 78,158)( 79,160)
( 80,162)( 81,161);
poly := sub<Sym(162)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope