include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,6}*1944o
if this polytope has a name.
Group : SmallGroup(1944,2341)
Rank : 3
Schlafli Type : {18,6}
Number of vertices, edges, etc : 162, 486, 54
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {18,6}*648i, {6,6}*648f
9-fold quotients : {18,6}*216a, {18,6}*216b, {6,6}*216a, {6,6}*216d
18-fold quotients : {9,6}*108, {6,3}*108
27-fold quotients : {18,2}*72, {6,6}*72a, {6,6}*72b, {6,6}*72c
54-fold quotients : {9,2}*36, {3,6}*36, {6,3}*36
81-fold quotients : {2,6}*24, {6,2}*24
162-fold quotients : {2,3}*12, {3,2}*12
243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,22)(11,24)(12,23)(13,19)(14,21)(15,20)
(16,25)(17,27)(18,26)(29,30)(31,34)(32,36)(33,35)(37,49)(38,51)(39,50)(40,46)
(41,48)(42,47)(43,52)(44,54)(45,53)(56,57)(58,61)(59,63)(60,62)(64,76)(65,78)
(66,77)(67,73)(68,75)(69,74)(70,79)(71,81)(72,80);;
s1 := ( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)(19,22)
(20,23)(21,24)(28,66)(29,64)(30,65)(31,72)(32,70)(33,71)(34,69)(35,67)(36,68)
(37,57)(38,55)(39,56)(40,63)(41,61)(42,62)(43,60)(44,58)(45,59)(46,78)(47,76)
(48,77)(49,75)(50,73)(51,74)(52,81)(53,79)(54,80);;
s2 := ( 1,28)( 2,29)( 3,30)( 4,31)( 5,32)( 6,33)( 7,34)( 8,35)( 9,36)(10,37)
(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)
(22,49)(23,50)(24,51)(25,52)(26,53)(27,54);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,22)(11,24)(12,23)(13,19)(14,21)
(15,20)(16,25)(17,27)(18,26)(29,30)(31,34)(32,36)(33,35)(37,49)(38,51)(39,50)
(40,46)(41,48)(42,47)(43,52)(44,54)(45,53)(56,57)(58,61)(59,63)(60,62)(64,76)
(65,78)(66,77)(67,73)(68,75)(69,74)(70,79)(71,81)(72,80);
s1 := Sym(81)!( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)
(19,22)(20,23)(21,24)(28,66)(29,64)(30,65)(31,72)(32,70)(33,71)(34,69)(35,67)
(36,68)(37,57)(38,55)(39,56)(40,63)(41,61)(42,62)(43,60)(44,58)(45,59)(46,78)
(47,76)(48,77)(49,75)(50,73)(51,74)(52,81)(53,79)(54,80);
s2 := Sym(81)!( 1,28)( 2,29)( 3,30)( 4,31)( 5,32)( 6,33)( 7,34)( 8,35)( 9,36)
(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)
(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54);
poly := sub<Sym(81)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope