Polytope of Type {6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6}*1944a
if this polytope has a name.
Group : SmallGroup(1944,941)
Rank : 3
Schlafli Type : {6,6}
Number of vertices, edges, etc : 162, 486, 162
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6}*972
   3-fold quotients : {6,6}*648a, {6,6}*648b
   6-fold quotients : {6,6}*324a, {6,6}*324b
   9-fold quotients : {6,6}*216b
   18-fold quotients : {6,6}*108
   27-fold quotients : {6,6}*72a
   81-fold quotients : {2,6}*24, {6,2}*24
   162-fold quotients : {2,3}*12, {3,2}*12
   243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  4,  8)(  5,  9)(  6,  7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)( 14, 27)
( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)( 37, 46)
( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)( 45, 50)
( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)( 68, 81)
( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 82,163)( 83,164)( 84,165)( 85,170)
( 86,171)( 87,169)( 88,168)( 89,166)( 90,167)( 91,181)( 92,182)( 93,183)
( 94,188)( 95,189)( 96,187)( 97,186)( 98,184)( 99,185)(100,172)(101,173)
(102,174)(103,179)(104,180)(105,178)(106,177)(107,175)(108,176)(109,190)
(110,191)(111,192)(112,197)(113,198)(114,196)(115,195)(116,193)(117,194)
(118,208)(119,209)(120,210)(121,215)(122,216)(123,214)(124,213)(125,211)
(126,212)(127,199)(128,200)(129,201)(130,206)(131,207)(132,205)(133,204)
(134,202)(135,203)(136,217)(137,218)(138,219)(139,224)(140,225)(141,223)
(142,222)(143,220)(144,221)(145,235)(146,236)(147,237)(148,242)(149,243)
(150,241)(151,240)(152,238)(153,239)(154,226)(155,227)(156,228)(157,233)
(158,234)(159,232)(160,231)(161,229)(162,230)(247,251)(248,252)(249,250)
(253,262)(254,263)(255,264)(256,269)(257,270)(258,268)(259,267)(260,265)
(261,266)(274,278)(275,279)(276,277)(280,289)(281,290)(282,291)(283,296)
(284,297)(285,295)(286,294)(287,292)(288,293)(301,305)(302,306)(303,304)
(307,316)(308,317)(309,318)(310,323)(311,324)(312,322)(313,321)(314,319)
(315,320)(325,406)(326,407)(327,408)(328,413)(329,414)(330,412)(331,411)
(332,409)(333,410)(334,424)(335,425)(336,426)(337,431)(338,432)(339,430)
(340,429)(341,427)(342,428)(343,415)(344,416)(345,417)(346,422)(347,423)
(348,421)(349,420)(350,418)(351,419)(352,433)(353,434)(354,435)(355,440)
(356,441)(357,439)(358,438)(359,436)(360,437)(361,451)(362,452)(363,453)
(364,458)(365,459)(366,457)(367,456)(368,454)(369,455)(370,442)(371,443)
(372,444)(373,449)(374,450)(375,448)(376,447)(377,445)(378,446)(379,460)
(380,461)(381,462)(382,467)(383,468)(384,466)(385,465)(386,463)(387,464)
(388,478)(389,479)(390,480)(391,485)(392,486)(393,484)(394,483)(395,481)
(396,482)(397,469)(398,470)(399,471)(400,476)(401,477)(402,475)(403,474)
(404,472)(405,473);;
s1 := (  1, 82)(  2, 84)(  3, 83)(  4, 88)(  5, 90)(  6, 89)(  7, 85)(  8, 87)
(  9, 86)( 10, 92)( 11, 91)( 12, 93)( 13, 98)( 14, 97)( 15, 99)( 16, 95)
( 17, 94)( 18, 96)( 19,102)( 20,101)( 21,100)( 22,108)( 23,107)( 24,106)
( 25,105)( 26,104)( 27,103)( 28,159)( 29,158)( 30,157)( 31,156)( 32,155)
( 33,154)( 34,162)( 35,161)( 36,160)( 37,139)( 38,141)( 39,140)( 40,136)
( 41,138)( 42,137)( 43,142)( 44,144)( 45,143)( 46,149)( 47,148)( 48,150)
( 49,146)( 50,145)( 51,147)( 52,152)( 53,151)( 54,153)( 55,121)( 56,123)
( 57,122)( 58,118)( 59,120)( 60,119)( 61,124)( 62,126)( 63,125)( 64,131)
( 65,130)( 66,132)( 67,128)( 68,127)( 69,129)( 70,134)( 71,133)( 72,135)
( 73,114)( 74,113)( 75,112)( 76,111)( 77,110)( 78,109)( 79,117)( 80,116)
( 81,115)(164,165)(166,169)(167,171)(168,170)(172,173)(175,179)(176,178)
(177,180)(181,183)(184,189)(185,188)(186,187)(190,240)(191,239)(192,238)
(193,237)(194,236)(195,235)(196,243)(197,242)(198,241)(199,220)(200,222)
(201,221)(202,217)(203,219)(204,218)(205,223)(206,225)(207,224)(208,230)
(209,229)(210,231)(211,227)(212,226)(213,228)(214,233)(215,232)(216,234)
(244,325)(245,327)(246,326)(247,331)(248,333)(249,332)(250,328)(251,330)
(252,329)(253,335)(254,334)(255,336)(256,341)(257,340)(258,342)(259,338)
(260,337)(261,339)(262,345)(263,344)(264,343)(265,351)(266,350)(267,349)
(268,348)(269,347)(270,346)(271,402)(272,401)(273,400)(274,399)(275,398)
(276,397)(277,405)(278,404)(279,403)(280,382)(281,384)(282,383)(283,379)
(284,381)(285,380)(286,385)(287,387)(288,386)(289,392)(290,391)(291,393)
(292,389)(293,388)(294,390)(295,395)(296,394)(297,396)(298,364)(299,366)
(300,365)(301,361)(302,363)(303,362)(304,367)(305,369)(306,368)(307,374)
(308,373)(309,375)(310,371)(311,370)(312,372)(313,377)(314,376)(315,378)
(316,357)(317,356)(318,355)(319,354)(320,353)(321,352)(322,360)(323,359)
(324,358)(407,408)(409,412)(410,414)(411,413)(415,416)(418,422)(419,421)
(420,423)(424,426)(427,432)(428,431)(429,430)(433,483)(434,482)(435,481)
(436,480)(437,479)(438,478)(439,486)(440,485)(441,484)(442,463)(443,465)
(444,464)(445,460)(446,462)(447,461)(448,466)(449,468)(450,467)(451,473)
(452,472)(453,474)(454,470)(455,469)(456,471)(457,476)(458,475)(459,477);;
s2 := (  1,271)(  2,273)(  3,272)(  4,276)(  5,275)(  6,274)(  7,278)(  8,277)
(  9,279)( 10,293)( 11,292)( 12,294)( 13,295)( 14,297)( 15,296)( 16,291)
( 17,290)( 18,289)( 19,288)( 20,287)( 21,286)( 22,281)( 23,280)( 24,282)
( 25,283)( 26,285)( 27,284)( 28,244)( 29,246)( 30,245)( 31,249)( 32,248)
( 33,247)( 34,251)( 35,250)( 36,252)( 37,266)( 38,265)( 39,267)( 40,268)
( 41,270)( 42,269)( 43,264)( 44,263)( 45,262)( 46,261)( 47,260)( 48,259)
( 49,254)( 50,253)( 51,255)( 52,256)( 53,258)( 54,257)( 55,298)( 56,300)
( 57,299)( 58,303)( 59,302)( 60,301)( 61,305)( 62,304)( 63,306)( 64,320)
( 65,319)( 66,321)( 67,322)( 68,324)( 69,323)( 70,318)( 71,317)( 72,316)
( 73,315)( 74,314)( 75,313)( 76,308)( 77,307)( 78,309)( 79,310)( 80,312)
( 81,311)( 82,352)( 83,354)( 84,353)( 85,357)( 86,356)( 87,355)( 88,359)
( 89,358)( 90,360)( 91,374)( 92,373)( 93,375)( 94,376)( 95,378)( 96,377)
( 97,372)( 98,371)( 99,370)(100,369)(101,368)(102,367)(103,362)(104,361)
(105,363)(106,364)(107,366)(108,365)(109,325)(110,327)(111,326)(112,330)
(113,329)(114,328)(115,332)(116,331)(117,333)(118,347)(119,346)(120,348)
(121,349)(122,351)(123,350)(124,345)(125,344)(126,343)(127,342)(128,341)
(129,340)(130,335)(131,334)(132,336)(133,337)(134,339)(135,338)(136,379)
(137,381)(138,380)(139,384)(140,383)(141,382)(142,386)(143,385)(144,387)
(145,401)(146,400)(147,402)(148,403)(149,405)(150,404)(151,399)(152,398)
(153,397)(154,396)(155,395)(156,394)(157,389)(158,388)(159,390)(160,391)
(161,393)(162,392)(163,433)(164,435)(165,434)(166,438)(167,437)(168,436)
(169,440)(170,439)(171,441)(172,455)(173,454)(174,456)(175,457)(176,459)
(177,458)(178,453)(179,452)(180,451)(181,450)(182,449)(183,448)(184,443)
(185,442)(186,444)(187,445)(188,447)(189,446)(190,406)(191,408)(192,407)
(193,411)(194,410)(195,409)(196,413)(197,412)(198,414)(199,428)(200,427)
(201,429)(202,430)(203,432)(204,431)(205,426)(206,425)(207,424)(208,423)
(209,422)(210,421)(211,416)(212,415)(213,417)(214,418)(215,420)(216,419)
(217,460)(218,462)(219,461)(220,465)(221,464)(222,463)(223,467)(224,466)
(225,468)(226,482)(227,481)(228,483)(229,484)(230,486)(231,485)(232,480)
(233,479)(234,478)(235,477)(236,476)(237,475)(238,470)(239,469)(240,471)
(241,472)(242,474)(243,473);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(486)!(  4,  8)(  5,  9)(  6,  7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)
( 14, 27)( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)
( 37, 46)( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)
( 45, 50)( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)
( 68, 81)( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 82,163)( 83,164)( 84,165)
( 85,170)( 86,171)( 87,169)( 88,168)( 89,166)( 90,167)( 91,181)( 92,182)
( 93,183)( 94,188)( 95,189)( 96,187)( 97,186)( 98,184)( 99,185)(100,172)
(101,173)(102,174)(103,179)(104,180)(105,178)(106,177)(107,175)(108,176)
(109,190)(110,191)(111,192)(112,197)(113,198)(114,196)(115,195)(116,193)
(117,194)(118,208)(119,209)(120,210)(121,215)(122,216)(123,214)(124,213)
(125,211)(126,212)(127,199)(128,200)(129,201)(130,206)(131,207)(132,205)
(133,204)(134,202)(135,203)(136,217)(137,218)(138,219)(139,224)(140,225)
(141,223)(142,222)(143,220)(144,221)(145,235)(146,236)(147,237)(148,242)
(149,243)(150,241)(151,240)(152,238)(153,239)(154,226)(155,227)(156,228)
(157,233)(158,234)(159,232)(160,231)(161,229)(162,230)(247,251)(248,252)
(249,250)(253,262)(254,263)(255,264)(256,269)(257,270)(258,268)(259,267)
(260,265)(261,266)(274,278)(275,279)(276,277)(280,289)(281,290)(282,291)
(283,296)(284,297)(285,295)(286,294)(287,292)(288,293)(301,305)(302,306)
(303,304)(307,316)(308,317)(309,318)(310,323)(311,324)(312,322)(313,321)
(314,319)(315,320)(325,406)(326,407)(327,408)(328,413)(329,414)(330,412)
(331,411)(332,409)(333,410)(334,424)(335,425)(336,426)(337,431)(338,432)
(339,430)(340,429)(341,427)(342,428)(343,415)(344,416)(345,417)(346,422)
(347,423)(348,421)(349,420)(350,418)(351,419)(352,433)(353,434)(354,435)
(355,440)(356,441)(357,439)(358,438)(359,436)(360,437)(361,451)(362,452)
(363,453)(364,458)(365,459)(366,457)(367,456)(368,454)(369,455)(370,442)
(371,443)(372,444)(373,449)(374,450)(375,448)(376,447)(377,445)(378,446)
(379,460)(380,461)(381,462)(382,467)(383,468)(384,466)(385,465)(386,463)
(387,464)(388,478)(389,479)(390,480)(391,485)(392,486)(393,484)(394,483)
(395,481)(396,482)(397,469)(398,470)(399,471)(400,476)(401,477)(402,475)
(403,474)(404,472)(405,473);
s1 := Sym(486)!(  1, 82)(  2, 84)(  3, 83)(  4, 88)(  5, 90)(  6, 89)(  7, 85)
(  8, 87)(  9, 86)( 10, 92)( 11, 91)( 12, 93)( 13, 98)( 14, 97)( 15, 99)
( 16, 95)( 17, 94)( 18, 96)( 19,102)( 20,101)( 21,100)( 22,108)( 23,107)
( 24,106)( 25,105)( 26,104)( 27,103)( 28,159)( 29,158)( 30,157)( 31,156)
( 32,155)( 33,154)( 34,162)( 35,161)( 36,160)( 37,139)( 38,141)( 39,140)
( 40,136)( 41,138)( 42,137)( 43,142)( 44,144)( 45,143)( 46,149)( 47,148)
( 48,150)( 49,146)( 50,145)( 51,147)( 52,152)( 53,151)( 54,153)( 55,121)
( 56,123)( 57,122)( 58,118)( 59,120)( 60,119)( 61,124)( 62,126)( 63,125)
( 64,131)( 65,130)( 66,132)( 67,128)( 68,127)( 69,129)( 70,134)( 71,133)
( 72,135)( 73,114)( 74,113)( 75,112)( 76,111)( 77,110)( 78,109)( 79,117)
( 80,116)( 81,115)(164,165)(166,169)(167,171)(168,170)(172,173)(175,179)
(176,178)(177,180)(181,183)(184,189)(185,188)(186,187)(190,240)(191,239)
(192,238)(193,237)(194,236)(195,235)(196,243)(197,242)(198,241)(199,220)
(200,222)(201,221)(202,217)(203,219)(204,218)(205,223)(206,225)(207,224)
(208,230)(209,229)(210,231)(211,227)(212,226)(213,228)(214,233)(215,232)
(216,234)(244,325)(245,327)(246,326)(247,331)(248,333)(249,332)(250,328)
(251,330)(252,329)(253,335)(254,334)(255,336)(256,341)(257,340)(258,342)
(259,338)(260,337)(261,339)(262,345)(263,344)(264,343)(265,351)(266,350)
(267,349)(268,348)(269,347)(270,346)(271,402)(272,401)(273,400)(274,399)
(275,398)(276,397)(277,405)(278,404)(279,403)(280,382)(281,384)(282,383)
(283,379)(284,381)(285,380)(286,385)(287,387)(288,386)(289,392)(290,391)
(291,393)(292,389)(293,388)(294,390)(295,395)(296,394)(297,396)(298,364)
(299,366)(300,365)(301,361)(302,363)(303,362)(304,367)(305,369)(306,368)
(307,374)(308,373)(309,375)(310,371)(311,370)(312,372)(313,377)(314,376)
(315,378)(316,357)(317,356)(318,355)(319,354)(320,353)(321,352)(322,360)
(323,359)(324,358)(407,408)(409,412)(410,414)(411,413)(415,416)(418,422)
(419,421)(420,423)(424,426)(427,432)(428,431)(429,430)(433,483)(434,482)
(435,481)(436,480)(437,479)(438,478)(439,486)(440,485)(441,484)(442,463)
(443,465)(444,464)(445,460)(446,462)(447,461)(448,466)(449,468)(450,467)
(451,473)(452,472)(453,474)(454,470)(455,469)(456,471)(457,476)(458,475)
(459,477);
s2 := Sym(486)!(  1,271)(  2,273)(  3,272)(  4,276)(  5,275)(  6,274)(  7,278)
(  8,277)(  9,279)( 10,293)( 11,292)( 12,294)( 13,295)( 14,297)( 15,296)
( 16,291)( 17,290)( 18,289)( 19,288)( 20,287)( 21,286)( 22,281)( 23,280)
( 24,282)( 25,283)( 26,285)( 27,284)( 28,244)( 29,246)( 30,245)( 31,249)
( 32,248)( 33,247)( 34,251)( 35,250)( 36,252)( 37,266)( 38,265)( 39,267)
( 40,268)( 41,270)( 42,269)( 43,264)( 44,263)( 45,262)( 46,261)( 47,260)
( 48,259)( 49,254)( 50,253)( 51,255)( 52,256)( 53,258)( 54,257)( 55,298)
( 56,300)( 57,299)( 58,303)( 59,302)( 60,301)( 61,305)( 62,304)( 63,306)
( 64,320)( 65,319)( 66,321)( 67,322)( 68,324)( 69,323)( 70,318)( 71,317)
( 72,316)( 73,315)( 74,314)( 75,313)( 76,308)( 77,307)( 78,309)( 79,310)
( 80,312)( 81,311)( 82,352)( 83,354)( 84,353)( 85,357)( 86,356)( 87,355)
( 88,359)( 89,358)( 90,360)( 91,374)( 92,373)( 93,375)( 94,376)( 95,378)
( 96,377)( 97,372)( 98,371)( 99,370)(100,369)(101,368)(102,367)(103,362)
(104,361)(105,363)(106,364)(107,366)(108,365)(109,325)(110,327)(111,326)
(112,330)(113,329)(114,328)(115,332)(116,331)(117,333)(118,347)(119,346)
(120,348)(121,349)(122,351)(123,350)(124,345)(125,344)(126,343)(127,342)
(128,341)(129,340)(130,335)(131,334)(132,336)(133,337)(134,339)(135,338)
(136,379)(137,381)(138,380)(139,384)(140,383)(141,382)(142,386)(143,385)
(144,387)(145,401)(146,400)(147,402)(148,403)(149,405)(150,404)(151,399)
(152,398)(153,397)(154,396)(155,395)(156,394)(157,389)(158,388)(159,390)
(160,391)(161,393)(162,392)(163,433)(164,435)(165,434)(166,438)(167,437)
(168,436)(169,440)(170,439)(171,441)(172,455)(173,454)(174,456)(175,457)
(176,459)(177,458)(178,453)(179,452)(180,451)(181,450)(182,449)(183,448)
(184,443)(185,442)(186,444)(187,445)(188,447)(189,446)(190,406)(191,408)
(192,407)(193,411)(194,410)(195,409)(196,413)(197,412)(198,414)(199,428)
(200,427)(201,429)(202,430)(203,432)(204,431)(205,426)(206,425)(207,424)
(208,423)(209,422)(210,421)(211,416)(212,415)(213,417)(214,418)(215,420)
(216,419)(217,460)(218,462)(219,461)(220,465)(221,464)(222,463)(223,467)
(224,466)(225,468)(226,482)(227,481)(228,483)(229,484)(230,486)(231,485)
(232,480)(233,479)(234,478)(235,477)(236,476)(237,475)(238,470)(239,469)
(240,471)(241,472)(242,474)(243,473);
poly := sub<Sym(486)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1 >; 
 
References : None.
to this polytope