include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,6}*1944g
if this polytope has a name.
Group : SmallGroup(1944,949)
Rank : 3
Schlafli Type : {18,6}
Number of vertices, edges, etc : 162, 486, 54
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {18,6}*972c
3-fold quotients : {18,6}*648b, {6,6}*648a
6-fold quotients : {18,6}*324a, {6,6}*324b
9-fold quotients : {18,6}*216a, {6,6}*216b
18-fold quotients : {6,6}*108
27-fold quotients : {18,2}*72, {6,6}*72a
54-fold quotients : {9,2}*36
81-fold quotients : {2,6}*24, {6,2}*24
162-fold quotients : {2,3}*12, {3,2}*12
243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)( 10, 19)( 11, 20)( 12, 21)( 13, 25)( 14, 26)
( 15, 27)( 16, 22)( 17, 23)( 18, 24)( 31, 34)( 32, 35)( 33, 36)( 37, 46)
( 38, 47)( 39, 48)( 40, 52)( 41, 53)( 42, 54)( 43, 49)( 44, 50)( 45, 51)
( 58, 61)( 59, 62)( 60, 63)( 64, 73)( 65, 74)( 66, 75)( 67, 79)( 68, 80)
( 69, 81)( 70, 76)( 71, 77)( 72, 78)( 82,172)( 83,173)( 84,174)( 85,178)
( 86,179)( 87,180)( 88,175)( 89,176)( 90,177)( 91,163)( 92,164)( 93,165)
( 94,169)( 95,170)( 96,171)( 97,166)( 98,167)( 99,168)(100,181)(101,182)
(102,183)(103,187)(104,188)(105,189)(106,184)(107,185)(108,186)(109,199)
(110,200)(111,201)(112,205)(113,206)(114,207)(115,202)(116,203)(117,204)
(118,190)(119,191)(120,192)(121,196)(122,197)(123,198)(124,193)(125,194)
(126,195)(127,208)(128,209)(129,210)(130,214)(131,215)(132,216)(133,211)
(134,212)(135,213)(136,226)(137,227)(138,228)(139,232)(140,233)(141,234)
(142,229)(143,230)(144,231)(145,217)(146,218)(147,219)(148,223)(149,224)
(150,225)(151,220)(152,221)(153,222)(154,235)(155,236)(156,237)(157,241)
(158,242)(159,243)(160,238)(161,239)(162,240)(247,250)(248,251)(249,252)
(253,262)(254,263)(255,264)(256,268)(257,269)(258,270)(259,265)(260,266)
(261,267)(274,277)(275,278)(276,279)(280,289)(281,290)(282,291)(283,295)
(284,296)(285,297)(286,292)(287,293)(288,294)(301,304)(302,305)(303,306)
(307,316)(308,317)(309,318)(310,322)(311,323)(312,324)(313,319)(314,320)
(315,321)(325,415)(326,416)(327,417)(328,421)(329,422)(330,423)(331,418)
(332,419)(333,420)(334,406)(335,407)(336,408)(337,412)(338,413)(339,414)
(340,409)(341,410)(342,411)(343,424)(344,425)(345,426)(346,430)(347,431)
(348,432)(349,427)(350,428)(351,429)(352,442)(353,443)(354,444)(355,448)
(356,449)(357,450)(358,445)(359,446)(360,447)(361,433)(362,434)(363,435)
(364,439)(365,440)(366,441)(367,436)(368,437)(369,438)(370,451)(371,452)
(372,453)(373,457)(374,458)(375,459)(376,454)(377,455)(378,456)(379,469)
(380,470)(381,471)(382,475)(383,476)(384,477)(385,472)(386,473)(387,474)
(388,460)(389,461)(390,462)(391,466)(392,467)(393,468)(394,463)(395,464)
(396,465)(397,478)(398,479)(399,480)(400,484)(401,485)(402,486)(403,481)
(404,482)(405,483);;
s1 := ( 1, 82)( 2, 84)( 3, 83)( 4, 87)( 5, 86)( 6, 85)( 7, 89)( 8, 88)
( 9, 90)( 10,100)( 11,102)( 12,101)( 13,105)( 14,104)( 15,103)( 16,107)
( 17,106)( 18,108)( 19, 91)( 20, 93)( 21, 92)( 22, 96)( 23, 95)( 24, 94)
( 25, 98)( 26, 97)( 27, 99)( 28,144)( 29,143)( 30,142)( 31,137)( 32,136)
( 33,138)( 34,139)( 35,141)( 36,140)( 37,162)( 38,161)( 39,160)( 40,155)
( 41,154)( 42,156)( 43,157)( 44,159)( 45,158)( 46,153)( 47,152)( 48,151)
( 49,146)( 50,145)( 51,147)( 52,148)( 53,150)( 54,149)( 55,113)( 56,112)
( 57,114)( 58,115)( 59,117)( 60,116)( 61,111)( 62,110)( 63,109)( 64,131)
( 65,130)( 66,132)( 67,133)( 68,135)( 69,134)( 70,129)( 71,128)( 72,127)
( 73,122)( 74,121)( 75,123)( 76,124)( 77,126)( 78,125)( 79,120)( 80,119)
( 81,118)(163,172)(164,174)(165,173)(166,177)(167,176)(168,175)(169,179)
(170,178)(171,180)(182,183)(184,186)(187,188)(190,234)(191,233)(192,232)
(193,227)(194,226)(195,228)(196,229)(197,231)(198,230)(199,225)(200,224)
(201,223)(202,218)(203,217)(204,219)(205,220)(206,222)(207,221)(208,243)
(209,242)(210,241)(211,236)(212,235)(213,237)(214,238)(215,240)(216,239)
(244,325)(245,327)(246,326)(247,330)(248,329)(249,328)(250,332)(251,331)
(252,333)(253,343)(254,345)(255,344)(256,348)(257,347)(258,346)(259,350)
(260,349)(261,351)(262,334)(263,336)(264,335)(265,339)(266,338)(267,337)
(268,341)(269,340)(270,342)(271,387)(272,386)(273,385)(274,380)(275,379)
(276,381)(277,382)(278,384)(279,383)(280,405)(281,404)(282,403)(283,398)
(284,397)(285,399)(286,400)(287,402)(288,401)(289,396)(290,395)(291,394)
(292,389)(293,388)(294,390)(295,391)(296,393)(297,392)(298,356)(299,355)
(300,357)(301,358)(302,360)(303,359)(304,354)(305,353)(306,352)(307,374)
(308,373)(309,375)(310,376)(311,378)(312,377)(313,372)(314,371)(315,370)
(316,365)(317,364)(318,366)(319,367)(320,369)(321,368)(322,363)(323,362)
(324,361)(406,415)(407,417)(408,416)(409,420)(410,419)(411,418)(412,422)
(413,421)(414,423)(425,426)(427,429)(430,431)(433,477)(434,476)(435,475)
(436,470)(437,469)(438,471)(439,472)(440,474)(441,473)(442,468)(443,467)
(444,466)(445,461)(446,460)(447,462)(448,463)(449,465)(450,464)(451,486)
(452,485)(453,484)(454,479)(455,478)(456,480)(457,481)(458,483)(459,482);;
s2 := ( 1,271)( 2,273)( 3,272)( 4,277)( 5,279)( 6,278)( 7,274)( 8,276)
( 9,275)( 10,280)( 11,282)( 12,281)( 13,286)( 14,288)( 15,287)( 16,283)
( 17,285)( 18,284)( 19,289)( 20,291)( 21,290)( 22,295)( 23,297)( 24,296)
( 25,292)( 26,294)( 27,293)( 28,244)( 29,246)( 30,245)( 31,250)( 32,252)
( 33,251)( 34,247)( 35,249)( 36,248)( 37,253)( 38,255)( 39,254)( 40,259)
( 41,261)( 42,260)( 43,256)( 44,258)( 45,257)( 46,262)( 47,264)( 48,263)
( 49,268)( 50,270)( 51,269)( 52,265)( 53,267)( 54,266)( 55,298)( 56,300)
( 57,299)( 58,304)( 59,306)( 60,305)( 61,301)( 62,303)( 63,302)( 64,307)
( 65,309)( 66,308)( 67,313)( 68,315)( 69,314)( 70,310)( 71,312)( 72,311)
( 73,316)( 74,318)( 75,317)( 76,322)( 77,324)( 78,323)( 79,319)( 80,321)
( 81,320)( 82,352)( 83,354)( 84,353)( 85,358)( 86,360)( 87,359)( 88,355)
( 89,357)( 90,356)( 91,361)( 92,363)( 93,362)( 94,367)( 95,369)( 96,368)
( 97,364)( 98,366)( 99,365)(100,370)(101,372)(102,371)(103,376)(104,378)
(105,377)(106,373)(107,375)(108,374)(109,325)(110,327)(111,326)(112,331)
(113,333)(114,332)(115,328)(116,330)(117,329)(118,334)(119,336)(120,335)
(121,340)(122,342)(123,341)(124,337)(125,339)(126,338)(127,343)(128,345)
(129,344)(130,349)(131,351)(132,350)(133,346)(134,348)(135,347)(136,379)
(137,381)(138,380)(139,385)(140,387)(141,386)(142,382)(143,384)(144,383)
(145,388)(146,390)(147,389)(148,394)(149,396)(150,395)(151,391)(152,393)
(153,392)(154,397)(155,399)(156,398)(157,403)(158,405)(159,404)(160,400)
(161,402)(162,401)(163,433)(164,435)(165,434)(166,439)(167,441)(168,440)
(169,436)(170,438)(171,437)(172,442)(173,444)(174,443)(175,448)(176,450)
(177,449)(178,445)(179,447)(180,446)(181,451)(182,453)(183,452)(184,457)
(185,459)(186,458)(187,454)(188,456)(189,455)(190,406)(191,408)(192,407)
(193,412)(194,414)(195,413)(196,409)(197,411)(198,410)(199,415)(200,417)
(201,416)(202,421)(203,423)(204,422)(205,418)(206,420)(207,419)(208,424)
(209,426)(210,425)(211,430)(212,432)(213,431)(214,427)(215,429)(216,428)
(217,460)(218,462)(219,461)(220,466)(221,468)(222,467)(223,463)(224,465)
(225,464)(226,469)(227,471)(228,470)(229,475)(230,477)(231,476)(232,472)
(233,474)(234,473)(235,478)(236,480)(237,479)(238,484)(239,486)(240,485)
(241,481)(242,483)(243,482);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(486)!( 4, 7)( 5, 8)( 6, 9)( 10, 19)( 11, 20)( 12, 21)( 13, 25)
( 14, 26)( 15, 27)( 16, 22)( 17, 23)( 18, 24)( 31, 34)( 32, 35)( 33, 36)
( 37, 46)( 38, 47)( 39, 48)( 40, 52)( 41, 53)( 42, 54)( 43, 49)( 44, 50)
( 45, 51)( 58, 61)( 59, 62)( 60, 63)( 64, 73)( 65, 74)( 66, 75)( 67, 79)
( 68, 80)( 69, 81)( 70, 76)( 71, 77)( 72, 78)( 82,172)( 83,173)( 84,174)
( 85,178)( 86,179)( 87,180)( 88,175)( 89,176)( 90,177)( 91,163)( 92,164)
( 93,165)( 94,169)( 95,170)( 96,171)( 97,166)( 98,167)( 99,168)(100,181)
(101,182)(102,183)(103,187)(104,188)(105,189)(106,184)(107,185)(108,186)
(109,199)(110,200)(111,201)(112,205)(113,206)(114,207)(115,202)(116,203)
(117,204)(118,190)(119,191)(120,192)(121,196)(122,197)(123,198)(124,193)
(125,194)(126,195)(127,208)(128,209)(129,210)(130,214)(131,215)(132,216)
(133,211)(134,212)(135,213)(136,226)(137,227)(138,228)(139,232)(140,233)
(141,234)(142,229)(143,230)(144,231)(145,217)(146,218)(147,219)(148,223)
(149,224)(150,225)(151,220)(152,221)(153,222)(154,235)(155,236)(156,237)
(157,241)(158,242)(159,243)(160,238)(161,239)(162,240)(247,250)(248,251)
(249,252)(253,262)(254,263)(255,264)(256,268)(257,269)(258,270)(259,265)
(260,266)(261,267)(274,277)(275,278)(276,279)(280,289)(281,290)(282,291)
(283,295)(284,296)(285,297)(286,292)(287,293)(288,294)(301,304)(302,305)
(303,306)(307,316)(308,317)(309,318)(310,322)(311,323)(312,324)(313,319)
(314,320)(315,321)(325,415)(326,416)(327,417)(328,421)(329,422)(330,423)
(331,418)(332,419)(333,420)(334,406)(335,407)(336,408)(337,412)(338,413)
(339,414)(340,409)(341,410)(342,411)(343,424)(344,425)(345,426)(346,430)
(347,431)(348,432)(349,427)(350,428)(351,429)(352,442)(353,443)(354,444)
(355,448)(356,449)(357,450)(358,445)(359,446)(360,447)(361,433)(362,434)
(363,435)(364,439)(365,440)(366,441)(367,436)(368,437)(369,438)(370,451)
(371,452)(372,453)(373,457)(374,458)(375,459)(376,454)(377,455)(378,456)
(379,469)(380,470)(381,471)(382,475)(383,476)(384,477)(385,472)(386,473)
(387,474)(388,460)(389,461)(390,462)(391,466)(392,467)(393,468)(394,463)
(395,464)(396,465)(397,478)(398,479)(399,480)(400,484)(401,485)(402,486)
(403,481)(404,482)(405,483);
s1 := Sym(486)!( 1, 82)( 2, 84)( 3, 83)( 4, 87)( 5, 86)( 6, 85)( 7, 89)
( 8, 88)( 9, 90)( 10,100)( 11,102)( 12,101)( 13,105)( 14,104)( 15,103)
( 16,107)( 17,106)( 18,108)( 19, 91)( 20, 93)( 21, 92)( 22, 96)( 23, 95)
( 24, 94)( 25, 98)( 26, 97)( 27, 99)( 28,144)( 29,143)( 30,142)( 31,137)
( 32,136)( 33,138)( 34,139)( 35,141)( 36,140)( 37,162)( 38,161)( 39,160)
( 40,155)( 41,154)( 42,156)( 43,157)( 44,159)( 45,158)( 46,153)( 47,152)
( 48,151)( 49,146)( 50,145)( 51,147)( 52,148)( 53,150)( 54,149)( 55,113)
( 56,112)( 57,114)( 58,115)( 59,117)( 60,116)( 61,111)( 62,110)( 63,109)
( 64,131)( 65,130)( 66,132)( 67,133)( 68,135)( 69,134)( 70,129)( 71,128)
( 72,127)( 73,122)( 74,121)( 75,123)( 76,124)( 77,126)( 78,125)( 79,120)
( 80,119)( 81,118)(163,172)(164,174)(165,173)(166,177)(167,176)(168,175)
(169,179)(170,178)(171,180)(182,183)(184,186)(187,188)(190,234)(191,233)
(192,232)(193,227)(194,226)(195,228)(196,229)(197,231)(198,230)(199,225)
(200,224)(201,223)(202,218)(203,217)(204,219)(205,220)(206,222)(207,221)
(208,243)(209,242)(210,241)(211,236)(212,235)(213,237)(214,238)(215,240)
(216,239)(244,325)(245,327)(246,326)(247,330)(248,329)(249,328)(250,332)
(251,331)(252,333)(253,343)(254,345)(255,344)(256,348)(257,347)(258,346)
(259,350)(260,349)(261,351)(262,334)(263,336)(264,335)(265,339)(266,338)
(267,337)(268,341)(269,340)(270,342)(271,387)(272,386)(273,385)(274,380)
(275,379)(276,381)(277,382)(278,384)(279,383)(280,405)(281,404)(282,403)
(283,398)(284,397)(285,399)(286,400)(287,402)(288,401)(289,396)(290,395)
(291,394)(292,389)(293,388)(294,390)(295,391)(296,393)(297,392)(298,356)
(299,355)(300,357)(301,358)(302,360)(303,359)(304,354)(305,353)(306,352)
(307,374)(308,373)(309,375)(310,376)(311,378)(312,377)(313,372)(314,371)
(315,370)(316,365)(317,364)(318,366)(319,367)(320,369)(321,368)(322,363)
(323,362)(324,361)(406,415)(407,417)(408,416)(409,420)(410,419)(411,418)
(412,422)(413,421)(414,423)(425,426)(427,429)(430,431)(433,477)(434,476)
(435,475)(436,470)(437,469)(438,471)(439,472)(440,474)(441,473)(442,468)
(443,467)(444,466)(445,461)(446,460)(447,462)(448,463)(449,465)(450,464)
(451,486)(452,485)(453,484)(454,479)(455,478)(456,480)(457,481)(458,483)
(459,482);
s2 := Sym(486)!( 1,271)( 2,273)( 3,272)( 4,277)( 5,279)( 6,278)( 7,274)
( 8,276)( 9,275)( 10,280)( 11,282)( 12,281)( 13,286)( 14,288)( 15,287)
( 16,283)( 17,285)( 18,284)( 19,289)( 20,291)( 21,290)( 22,295)( 23,297)
( 24,296)( 25,292)( 26,294)( 27,293)( 28,244)( 29,246)( 30,245)( 31,250)
( 32,252)( 33,251)( 34,247)( 35,249)( 36,248)( 37,253)( 38,255)( 39,254)
( 40,259)( 41,261)( 42,260)( 43,256)( 44,258)( 45,257)( 46,262)( 47,264)
( 48,263)( 49,268)( 50,270)( 51,269)( 52,265)( 53,267)( 54,266)( 55,298)
( 56,300)( 57,299)( 58,304)( 59,306)( 60,305)( 61,301)( 62,303)( 63,302)
( 64,307)( 65,309)( 66,308)( 67,313)( 68,315)( 69,314)( 70,310)( 71,312)
( 72,311)( 73,316)( 74,318)( 75,317)( 76,322)( 77,324)( 78,323)( 79,319)
( 80,321)( 81,320)( 82,352)( 83,354)( 84,353)( 85,358)( 86,360)( 87,359)
( 88,355)( 89,357)( 90,356)( 91,361)( 92,363)( 93,362)( 94,367)( 95,369)
( 96,368)( 97,364)( 98,366)( 99,365)(100,370)(101,372)(102,371)(103,376)
(104,378)(105,377)(106,373)(107,375)(108,374)(109,325)(110,327)(111,326)
(112,331)(113,333)(114,332)(115,328)(116,330)(117,329)(118,334)(119,336)
(120,335)(121,340)(122,342)(123,341)(124,337)(125,339)(126,338)(127,343)
(128,345)(129,344)(130,349)(131,351)(132,350)(133,346)(134,348)(135,347)
(136,379)(137,381)(138,380)(139,385)(140,387)(141,386)(142,382)(143,384)
(144,383)(145,388)(146,390)(147,389)(148,394)(149,396)(150,395)(151,391)
(152,393)(153,392)(154,397)(155,399)(156,398)(157,403)(158,405)(159,404)
(160,400)(161,402)(162,401)(163,433)(164,435)(165,434)(166,439)(167,441)
(168,440)(169,436)(170,438)(171,437)(172,442)(173,444)(174,443)(175,448)
(176,450)(177,449)(178,445)(179,447)(180,446)(181,451)(182,453)(183,452)
(184,457)(185,459)(186,458)(187,454)(188,456)(189,455)(190,406)(191,408)
(192,407)(193,412)(194,414)(195,413)(196,409)(197,411)(198,410)(199,415)
(200,417)(201,416)(202,421)(203,423)(204,422)(205,418)(206,420)(207,419)
(208,424)(209,426)(210,425)(211,430)(212,432)(213,431)(214,427)(215,429)
(216,428)(217,460)(218,462)(219,461)(220,466)(221,468)(222,467)(223,463)
(224,465)(225,464)(226,469)(227,471)(228,470)(229,475)(230,477)(231,476)
(232,472)(233,474)(234,473)(235,478)(236,480)(237,479)(238,484)(239,486)
(240,485)(241,481)(242,483)(243,482);
poly := sub<Sym(486)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope