include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,10}*240b
if this polytope has a name.
Group : SmallGroup(240,190)
Rank : 3
Schlafli Type : {10,10}
Number of vertices, edges, etc : 12, 60, 12
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{10,10,2} of size 480
{10,10,4} of size 960
{10,10,6} of size 1440
{10,10,8} of size 1920
Vertex Figure Of :
{2,10,10} of size 480
{4,10,10} of size 960
{6,10,10} of size 1440
{8,10,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,10}*120b, {10,5}*120a
4-fold quotients : {5,5}*60
Covers (Minimal Covers in Boldface) :
2-fold covers : {10,10}*480
4-fold covers : {10,20}*960a, {20,10}*960a, {10,20}*960b, {20,10}*960b, {10,10}*960
6-fold covers : {10,30}*1440, {30,10}*1440
8-fold covers : {20,20}*1920a, {10,40}*1920a, {40,10}*1920a, {10,20}*1920, {20,10}*1920, {20,20}*1920b, {20,20}*1920c, {20,20}*1920d, {10,40}*1920b, {40,10}*1920b
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4);;
s2 := (2,4)(3,5)(6,8)(7,9);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(9)!(1,2)(3,4);
s2 := Sym(9)!(2,4)(3,5)(6,8)(7,9);
poly := sub<Sym(9)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0 >;
References : None.
to this polytope