Polytope of Type {6,8,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,8,10,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,235343)
Rank : 5
Schlafli Type : {6,8,10,2}
Number of vertices, edges, etc : 6, 24, 40, 10, 2
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,4,10,2}*960
   3-fold quotients : {2,8,10,2}*640
   4-fold quotients : {6,2,10,2}*480
   5-fold quotients : {6,8,2,2}*384
   6-fold quotients : {2,4,10,2}*320
   8-fold quotients : {3,2,10,2}*240, {6,2,5,2}*240
   10-fold quotients : {6,4,2,2}*192a
   12-fold quotients : {2,2,10,2}*160
   15-fold quotients : {2,8,2,2}*128
   16-fold quotients : {3,2,5,2}*120
   20-fold quotients : {6,2,2,2}*96
   24-fold quotients : {2,2,5,2}*80
   30-fold quotients : {2,4,2,2}*64
   40-fold quotients : {3,2,2,2}*48
   60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)( 23, 28)
( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 51, 56)
( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 66, 71)( 67, 72)( 68, 73)( 69, 74)
( 70, 75)( 81, 86)( 82, 87)( 83, 88)( 84, 89)( 85, 90)( 96,101)( 97,102)
( 98,103)( 99,104)(100,105)(111,116)(112,117)(113,118)(114,119)(115,120);;
s1 := (  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 16, 21)( 17, 22)( 18, 23)
( 19, 24)( 20, 25)( 31, 51)( 32, 52)( 33, 53)( 34, 54)( 35, 55)( 36, 46)
( 37, 47)( 38, 48)( 39, 49)( 40, 50)( 41, 56)( 42, 57)( 43, 58)( 44, 59)
( 45, 60)( 61, 96)( 62, 97)( 63, 98)( 64, 99)( 65,100)( 66, 91)( 67, 92)
( 68, 93)( 69, 94)( 70, 95)( 71,101)( 72,102)( 73,103)( 74,104)( 75,105)
( 76,111)( 77,112)( 78,113)( 79,114)( 80,115)( 81,106)( 82,107)( 83,108)
( 84,109)( 85,110)( 86,116)( 87,117)( 88,118)( 89,119)( 90,120);;
s2 := (  1, 61)(  2, 65)(  3, 64)(  4, 63)(  5, 62)(  6, 66)(  7, 70)(  8, 69)
(  9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)( 16, 76)
( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)( 24, 83)
( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31,106)( 32,110)
( 33,109)( 34,108)( 35,107)( 36,111)( 37,115)( 38,114)( 39,113)( 40,112)
( 41,116)( 42,120)( 43,119)( 44,118)( 45,117)( 46, 91)( 47, 95)( 48, 94)
( 49, 93)( 50, 92)( 51, 96)( 52,100)( 53, 99)( 54, 98)( 55, 97)( 56,101)
( 57,105)( 58,104)( 59,103)( 60,102);;
s3 := (  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)( 18, 20)
( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)( 38, 40)
( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)( 58, 60)
( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)( 78, 80)
( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)( 98,100)
(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)(118,120);;
s4 := (121,122);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(122)!(  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)
( 23, 28)( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)
( 51, 56)( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 66, 71)( 67, 72)( 68, 73)
( 69, 74)( 70, 75)( 81, 86)( 82, 87)( 83, 88)( 84, 89)( 85, 90)( 96,101)
( 97,102)( 98,103)( 99,104)(100,105)(111,116)(112,117)(113,118)(114,119)
(115,120);
s1 := Sym(122)!(  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 16, 21)( 17, 22)
( 18, 23)( 19, 24)( 20, 25)( 31, 51)( 32, 52)( 33, 53)( 34, 54)( 35, 55)
( 36, 46)( 37, 47)( 38, 48)( 39, 49)( 40, 50)( 41, 56)( 42, 57)( 43, 58)
( 44, 59)( 45, 60)( 61, 96)( 62, 97)( 63, 98)( 64, 99)( 65,100)( 66, 91)
( 67, 92)( 68, 93)( 69, 94)( 70, 95)( 71,101)( 72,102)( 73,103)( 74,104)
( 75,105)( 76,111)( 77,112)( 78,113)( 79,114)( 80,115)( 81,106)( 82,107)
( 83,108)( 84,109)( 85,110)( 86,116)( 87,117)( 88,118)( 89,119)( 90,120);
s2 := Sym(122)!(  1, 61)(  2, 65)(  3, 64)(  4, 63)(  5, 62)(  6, 66)(  7, 70)
(  8, 69)(  9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)
( 16, 76)( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)
( 24, 83)( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31,106)
( 32,110)( 33,109)( 34,108)( 35,107)( 36,111)( 37,115)( 38,114)( 39,113)
( 40,112)( 41,116)( 42,120)( 43,119)( 44,118)( 45,117)( 46, 91)( 47, 95)
( 48, 94)( 49, 93)( 50, 92)( 51, 96)( 52,100)( 53, 99)( 54, 98)( 55, 97)
( 56,101)( 57,105)( 58,104)( 59,103)( 60,102);
s3 := Sym(122)!(  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)
( 18, 20)( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)
( 38, 40)( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)
( 58, 60)( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)
( 78, 80)( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)
( 98,100)(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)
(118,120);
s4 := Sym(122)!(121,122);
poly := sub<Sym(122)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope