include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,23}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,23}*276
if this polytope has a name.
Group : SmallGroup(276,5)
Rank : 4
Schlafli Type : {3,2,23}
Number of vertices, edges, etc : 3, 3, 23, 23
Order of s0s1s2s3 : 69
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,23,2} of size 552
Vertex Figure Of :
{2,3,2,23} of size 552
{3,3,2,23} of size 1104
{4,3,2,23} of size 1104
{6,3,2,23} of size 1656
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,46}*552, {6,2,23}*552
3-fold covers : {9,2,23}*828, {3,2,69}*828
4-fold covers : {12,2,23}*1104, {3,2,92}*1104, {6,2,46}*1104
5-fold covers : {15,2,23}*1380, {3,2,115}*1380
6-fold covers : {9,2,46}*1656, {18,2,23}*1656, {3,6,46}*1656, {3,2,138}*1656, {6,2,69}*1656
7-fold covers : {21,2,23}*1932, {3,2,161}*1932
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26);;
s3 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(26)!(2,3);
s1 := Sym(26)!(1,2);
s2 := Sym(26)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26);
s3 := Sym(26)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25);
poly := sub<Sym(26)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope