include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,54,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,54,2}*432
if this polytope has a name.
Group : SmallGroup(432,227)
Rank : 4
Schlafli Type : {2,54,2}
Number of vertices, edges, etc : 2, 54, 54, 2
Order of s0s1s2s3 : 54
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,54,2,2} of size 864
{2,54,2,3} of size 1296
{2,54,2,4} of size 1728
Vertex Figure Of :
{2,2,54,2} of size 864
{3,2,54,2} of size 1296
{4,2,54,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,27,2}*216
3-fold quotients : {2,18,2}*144
6-fold quotients : {2,9,2}*72
9-fold quotients : {2,6,2}*48
18-fold quotients : {2,3,2}*24
27-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,108,2}*864, {2,54,4}*864a, {4,54,2}*864a
3-fold covers : {2,162,2}*1296, {2,54,6}*1296a, {2,54,6}*1296b, {6,54,2}*1296a, {6,54,2}*1296b
4-fold covers : {2,108,4}*1728a, {4,108,2}*1728a, {4,54,4}*1728a, {2,216,2}*1728, {2,54,8}*1728, {8,54,2}*1728, {2,54,4}*1728, {4,54,2}*1728
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)
(47,48)(49,50)(51,52)(53,54)(55,56);;
s2 := ( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,23)(20,21)
(22,27)(24,25)(26,31)(28,29)(30,35)(32,33)(34,39)(36,37)(38,43)(40,41)(42,47)
(44,45)(46,51)(48,49)(50,55)(52,53)(54,56);;
s3 := (57,58);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!(1,2);
s1 := Sym(58)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)
(45,46)(47,48)(49,50)(51,52)(53,54)(55,56);
s2 := Sym(58)!( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,23)
(20,21)(22,27)(24,25)(26,31)(28,29)(30,35)(32,33)(34,39)(36,37)(38,43)(40,41)
(42,47)(44,45)(46,51)(48,49)(50,55)(52,53)(54,56);
s3 := Sym(58)!(57,58);
poly := sub<Sym(58)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope