include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {128,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {128,2}*512
if this polytope has a name.
Group : SmallGroup(512,60898)
Rank : 3
Schlafli Type : {128,2}
Number of vertices, edges, etc : 128, 128, 2
Order of s0s1s2 : 128
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {64,2}*256
4-fold quotients : {32,2}*128
8-fold quotients : {16,2}*64
16-fold quotients : {8,2}*32
32-fold quotients : {4,2}*16
64-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 7)( 6, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 25)
( 18, 26)( 19, 28)( 20, 27)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 49)
( 34, 50)( 35, 52)( 36, 51)( 37, 55)( 38, 56)( 39, 53)( 40, 54)( 41, 61)
( 42, 62)( 43, 64)( 44, 63)( 45, 57)( 46, 58)( 47, 60)( 48, 59)( 65, 97)
( 66, 98)( 67,100)( 68, 99)( 69,103)( 70,104)( 71,101)( 72,102)( 73,109)
( 74,110)( 75,112)( 76,111)( 77,105)( 78,106)( 79,108)( 80,107)( 81,121)
( 82,122)( 83,124)( 84,123)( 85,127)( 86,128)( 87,125)( 88,126)( 89,113)
( 90,114)( 91,116)( 92,115)( 93,119)( 94,120)( 95,117)( 96,118);;
s1 := ( 1, 65)( 2, 66)( 3, 68)( 4, 67)( 5, 71)( 6, 72)( 7, 69)( 8, 70)
( 9, 77)( 10, 78)( 11, 80)( 12, 79)( 13, 73)( 14, 74)( 15, 76)( 16, 75)
( 17, 89)( 18, 90)( 19, 92)( 20, 91)( 21, 95)( 22, 96)( 23, 93)( 24, 94)
( 25, 81)( 26, 82)( 27, 84)( 28, 83)( 29, 87)( 30, 88)( 31, 85)( 32, 86)
( 33,113)( 34,114)( 35,116)( 36,115)( 37,119)( 38,120)( 39,117)( 40,118)
( 41,125)( 42,126)( 43,128)( 44,127)( 45,121)( 46,122)( 47,124)( 48,123)
( 49, 97)( 50, 98)( 51,100)( 52, 99)( 53,103)( 54,104)( 55,101)( 56,102)
( 57,109)( 58,110)( 59,112)( 60,111)( 61,105)( 62,106)( 63,108)( 64,107);;
s2 := (129,130);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(130)!( 3, 4)( 5, 7)( 6, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)
( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 21, 31)( 22, 32)( 23, 29)( 24, 30)
( 33, 49)( 34, 50)( 35, 52)( 36, 51)( 37, 55)( 38, 56)( 39, 53)( 40, 54)
( 41, 61)( 42, 62)( 43, 64)( 44, 63)( 45, 57)( 46, 58)( 47, 60)( 48, 59)
( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69,103)( 70,104)( 71,101)( 72,102)
( 73,109)( 74,110)( 75,112)( 76,111)( 77,105)( 78,106)( 79,108)( 80,107)
( 81,121)( 82,122)( 83,124)( 84,123)( 85,127)( 86,128)( 87,125)( 88,126)
( 89,113)( 90,114)( 91,116)( 92,115)( 93,119)( 94,120)( 95,117)( 96,118);
s1 := Sym(130)!( 1, 65)( 2, 66)( 3, 68)( 4, 67)( 5, 71)( 6, 72)( 7, 69)
( 8, 70)( 9, 77)( 10, 78)( 11, 80)( 12, 79)( 13, 73)( 14, 74)( 15, 76)
( 16, 75)( 17, 89)( 18, 90)( 19, 92)( 20, 91)( 21, 95)( 22, 96)( 23, 93)
( 24, 94)( 25, 81)( 26, 82)( 27, 84)( 28, 83)( 29, 87)( 30, 88)( 31, 85)
( 32, 86)( 33,113)( 34,114)( 35,116)( 36,115)( 37,119)( 38,120)( 39,117)
( 40,118)( 41,125)( 42,126)( 43,128)( 44,127)( 45,121)( 46,122)( 47,124)
( 48,123)( 49, 97)( 50, 98)( 51,100)( 52, 99)( 53,103)( 54,104)( 55,101)
( 56,102)( 57,109)( 58,110)( 59,112)( 60,111)( 61,105)( 62,106)( 63,108)
( 64,107);
s2 := Sym(130)!(129,130);
poly := sub<Sym(130)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope