include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,26}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,26}*520
Also Known As : {10,26|2}. if this polytope has another name.
Group : SmallGroup(520,45)
Rank : 3
Schlafli Type : {10,26}
Number of vertices, edges, etc : 10, 130, 26
Order of s0s1s2 : 130
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{10,26,2} of size 1040
Vertex Figure Of :
{2,10,26} of size 1040
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,26}*104
10-fold quotients : {2,13}*52
13-fold quotients : {10,2}*40
26-fold quotients : {5,2}*20
65-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {20,26}*1040, {10,52}*1040
3-fold covers : {30,26}*1560, {10,78}*1560
Permutation Representation (GAP) :
s0 := ( 14, 53)( 15, 54)( 16, 55)( 17, 56)( 18, 57)( 19, 58)( 20, 59)( 21, 60)
( 22, 61)( 23, 62)( 24, 63)( 25, 64)( 26, 65)( 27, 40)( 28, 41)( 29, 42)
( 30, 43)( 31, 44)( 32, 45)( 33, 46)( 34, 47)( 35, 48)( 36, 49)( 37, 50)
( 38, 51)( 39, 52)( 79,118)( 80,119)( 81,120)( 82,121)( 83,122)( 84,123)
( 85,124)( 86,125)( 87,126)( 88,127)( 89,128)( 90,129)( 91,130)( 92,105)
( 93,106)( 94,107)( 95,108)( 96,109)( 97,110)( 98,111)( 99,112)(100,113)
(101,114)(102,115)(103,116)(104,117);;
s1 := ( 1, 14)( 2, 26)( 3, 25)( 4, 24)( 5, 23)( 6, 22)( 7, 21)( 8, 20)
( 9, 19)( 10, 18)( 11, 17)( 12, 16)( 13, 15)( 27, 53)( 28, 65)( 29, 64)
( 30, 63)( 31, 62)( 32, 61)( 33, 60)( 34, 59)( 35, 58)( 36, 57)( 37, 56)
( 38, 55)( 39, 54)( 41, 52)( 42, 51)( 43, 50)( 44, 49)( 45, 48)( 46, 47)
( 66, 79)( 67, 91)( 68, 90)( 69, 89)( 70, 88)( 71, 87)( 72, 86)( 73, 85)
( 74, 84)( 75, 83)( 76, 82)( 77, 81)( 78, 80)( 92,118)( 93,130)( 94,129)
( 95,128)( 96,127)( 97,126)( 98,125)( 99,124)(100,123)(101,122)(102,121)
(103,120)(104,119)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112);;
s2 := ( 1, 67)( 2, 66)( 3, 78)( 4, 77)( 5, 76)( 6, 75)( 7, 74)( 8, 73)
( 9, 72)( 10, 71)( 11, 70)( 12, 69)( 13, 68)( 14, 80)( 15, 79)( 16, 91)
( 17, 90)( 18, 89)( 19, 88)( 20, 87)( 21, 86)( 22, 85)( 23, 84)( 24, 83)
( 25, 82)( 26, 81)( 27, 93)( 28, 92)( 29,104)( 30,103)( 31,102)( 32,101)
( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39, 94)( 40,106)
( 41,105)( 42,117)( 43,116)( 44,115)( 45,114)( 46,113)( 47,112)( 48,111)
( 49,110)( 50,109)( 51,108)( 52,107)( 53,119)( 54,118)( 55,130)( 56,129)
( 57,128)( 58,127)( 59,126)( 60,125)( 61,124)( 62,123)( 63,122)( 64,121)
( 65,120);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(130)!( 14, 53)( 15, 54)( 16, 55)( 17, 56)( 18, 57)( 19, 58)( 20, 59)
( 21, 60)( 22, 61)( 23, 62)( 24, 63)( 25, 64)( 26, 65)( 27, 40)( 28, 41)
( 29, 42)( 30, 43)( 31, 44)( 32, 45)( 33, 46)( 34, 47)( 35, 48)( 36, 49)
( 37, 50)( 38, 51)( 39, 52)( 79,118)( 80,119)( 81,120)( 82,121)( 83,122)
( 84,123)( 85,124)( 86,125)( 87,126)( 88,127)( 89,128)( 90,129)( 91,130)
( 92,105)( 93,106)( 94,107)( 95,108)( 96,109)( 97,110)( 98,111)( 99,112)
(100,113)(101,114)(102,115)(103,116)(104,117);
s1 := Sym(130)!( 1, 14)( 2, 26)( 3, 25)( 4, 24)( 5, 23)( 6, 22)( 7, 21)
( 8, 20)( 9, 19)( 10, 18)( 11, 17)( 12, 16)( 13, 15)( 27, 53)( 28, 65)
( 29, 64)( 30, 63)( 31, 62)( 32, 61)( 33, 60)( 34, 59)( 35, 58)( 36, 57)
( 37, 56)( 38, 55)( 39, 54)( 41, 52)( 42, 51)( 43, 50)( 44, 49)( 45, 48)
( 46, 47)( 66, 79)( 67, 91)( 68, 90)( 69, 89)( 70, 88)( 71, 87)( 72, 86)
( 73, 85)( 74, 84)( 75, 83)( 76, 82)( 77, 81)( 78, 80)( 92,118)( 93,130)
( 94,129)( 95,128)( 96,127)( 97,126)( 98,125)( 99,124)(100,123)(101,122)
(102,121)(103,120)(104,119)(106,117)(107,116)(108,115)(109,114)(110,113)
(111,112);
s2 := Sym(130)!( 1, 67)( 2, 66)( 3, 78)( 4, 77)( 5, 76)( 6, 75)( 7, 74)
( 8, 73)( 9, 72)( 10, 71)( 11, 70)( 12, 69)( 13, 68)( 14, 80)( 15, 79)
( 16, 91)( 17, 90)( 18, 89)( 19, 88)( 20, 87)( 21, 86)( 22, 85)( 23, 84)
( 24, 83)( 25, 82)( 26, 81)( 27, 93)( 28, 92)( 29,104)( 30,103)( 31,102)
( 32,101)( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39, 94)
( 40,106)( 41,105)( 42,117)( 43,116)( 44,115)( 45,114)( 46,113)( 47,112)
( 48,111)( 49,110)( 50,109)( 51,108)( 52,107)( 53,119)( 54,118)( 55,130)
( 56,129)( 57,128)( 58,127)( 59,126)( 60,125)( 61,124)( 62,123)( 63,122)
( 64,121)( 65,120);
poly := sub<Sym(130)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope