Polytope of Type {286}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {286}*572
Also Known As : 286-gon, {286}. if this polytope has another name.
Group : SmallGroup(572,10)
Rank : 2
Schlafli Type : {286}
Number of vertices, edges, etc : 286, 286
Order of s0s1 : 286
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {286,2} of size 1144
Vertex Figure Of :
   {2,286} of size 1144
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {143}*286
   11-fold quotients : {26}*52
   13-fold quotients : {22}*44
   22-fold quotients : {13}*26
   26-fold quotients : {11}*22
   143-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {572}*1144
   3-fold covers : {858}*1716
Permutation Representation (GAP) :
s0 := (  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14,131)( 15,143)
( 16,142)( 17,141)( 18,140)( 19,139)( 20,138)( 21,137)( 22,136)( 23,135)
( 24,134)( 25,133)( 26,132)( 27,118)( 28,130)( 29,129)( 30,128)( 31,127)
( 32,126)( 33,125)( 34,124)( 35,123)( 36,122)( 37,121)( 38,120)( 39,119)
( 40,105)( 41,117)( 42,116)( 43,115)( 44,114)( 45,113)( 46,112)( 47,111)
( 48,110)( 49,109)( 50,108)( 51,107)( 52,106)( 53, 92)( 54,104)( 55,103)
( 56,102)( 57,101)( 58,100)( 59, 99)( 60, 98)( 61, 97)( 62, 96)( 63, 95)
( 64, 94)( 65, 93)( 66, 79)( 67, 91)( 68, 90)( 69, 89)( 70, 88)( 71, 87)
( 72, 86)( 73, 85)( 74, 84)( 75, 83)( 76, 82)( 77, 81)( 78, 80)(145,156)
(146,155)(147,154)(148,153)(149,152)(150,151)(157,274)(158,286)(159,285)
(160,284)(161,283)(162,282)(163,281)(164,280)(165,279)(166,278)(167,277)
(168,276)(169,275)(170,261)(171,273)(172,272)(173,271)(174,270)(175,269)
(176,268)(177,267)(178,266)(179,265)(180,264)(181,263)(182,262)(183,248)
(184,260)(185,259)(186,258)(187,257)(188,256)(189,255)(190,254)(191,253)
(192,252)(193,251)(194,250)(195,249)(196,235)(197,247)(198,246)(199,245)
(200,244)(201,243)(202,242)(203,241)(204,240)(205,239)(206,238)(207,237)
(208,236)(209,222)(210,234)(211,233)(212,232)(213,231)(214,230)(215,229)
(216,228)(217,227)(218,226)(219,225)(220,224)(221,223);;
s1 := (  1,158)(  2,157)(  3,169)(  4,168)(  5,167)(  6,166)(  7,165)(  8,164)
(  9,163)( 10,162)( 11,161)( 12,160)( 13,159)( 14,145)( 15,144)( 16,156)
( 17,155)( 18,154)( 19,153)( 20,152)( 21,151)( 22,150)( 23,149)( 24,148)
( 25,147)( 26,146)( 27,275)( 28,274)( 29,286)( 30,285)( 31,284)( 32,283)
( 33,282)( 34,281)( 35,280)( 36,279)( 37,278)( 38,277)( 39,276)( 40,262)
( 41,261)( 42,273)( 43,272)( 44,271)( 45,270)( 46,269)( 47,268)( 48,267)
( 49,266)( 50,265)( 51,264)( 52,263)( 53,249)( 54,248)( 55,260)( 56,259)
( 57,258)( 58,257)( 59,256)( 60,255)( 61,254)( 62,253)( 63,252)( 64,251)
( 65,250)( 66,236)( 67,235)( 68,247)( 69,246)( 70,245)( 71,244)( 72,243)
( 73,242)( 74,241)( 75,240)( 76,239)( 77,238)( 78,237)( 79,223)( 80,222)
( 81,234)( 82,233)( 83,232)( 84,231)( 85,230)( 86,229)( 87,228)( 88,227)
( 89,226)( 90,225)( 91,224)( 92,210)( 93,209)( 94,221)( 95,220)( 96,219)
( 97,218)( 98,217)( 99,216)(100,215)(101,214)(102,213)(103,212)(104,211)
(105,197)(106,196)(107,208)(108,207)(109,206)(110,205)(111,204)(112,203)
(113,202)(114,201)(115,200)(116,199)(117,198)(118,184)(119,183)(120,195)
(121,194)(122,193)(123,192)(124,191)(125,190)(126,189)(127,188)(128,187)
(129,186)(130,185)(131,171)(132,170)(133,182)(134,181)(135,180)(136,179)
(137,178)(138,177)(139,176)(140,175)(141,174)(142,173)(143,172);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(286)!(  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14,131)
( 15,143)( 16,142)( 17,141)( 18,140)( 19,139)( 20,138)( 21,137)( 22,136)
( 23,135)( 24,134)( 25,133)( 26,132)( 27,118)( 28,130)( 29,129)( 30,128)
( 31,127)( 32,126)( 33,125)( 34,124)( 35,123)( 36,122)( 37,121)( 38,120)
( 39,119)( 40,105)( 41,117)( 42,116)( 43,115)( 44,114)( 45,113)( 46,112)
( 47,111)( 48,110)( 49,109)( 50,108)( 51,107)( 52,106)( 53, 92)( 54,104)
( 55,103)( 56,102)( 57,101)( 58,100)( 59, 99)( 60, 98)( 61, 97)( 62, 96)
( 63, 95)( 64, 94)( 65, 93)( 66, 79)( 67, 91)( 68, 90)( 69, 89)( 70, 88)
( 71, 87)( 72, 86)( 73, 85)( 74, 84)( 75, 83)( 76, 82)( 77, 81)( 78, 80)
(145,156)(146,155)(147,154)(148,153)(149,152)(150,151)(157,274)(158,286)
(159,285)(160,284)(161,283)(162,282)(163,281)(164,280)(165,279)(166,278)
(167,277)(168,276)(169,275)(170,261)(171,273)(172,272)(173,271)(174,270)
(175,269)(176,268)(177,267)(178,266)(179,265)(180,264)(181,263)(182,262)
(183,248)(184,260)(185,259)(186,258)(187,257)(188,256)(189,255)(190,254)
(191,253)(192,252)(193,251)(194,250)(195,249)(196,235)(197,247)(198,246)
(199,245)(200,244)(201,243)(202,242)(203,241)(204,240)(205,239)(206,238)
(207,237)(208,236)(209,222)(210,234)(211,233)(212,232)(213,231)(214,230)
(215,229)(216,228)(217,227)(218,226)(219,225)(220,224)(221,223);
s1 := Sym(286)!(  1,158)(  2,157)(  3,169)(  4,168)(  5,167)(  6,166)(  7,165)
(  8,164)(  9,163)( 10,162)( 11,161)( 12,160)( 13,159)( 14,145)( 15,144)
( 16,156)( 17,155)( 18,154)( 19,153)( 20,152)( 21,151)( 22,150)( 23,149)
( 24,148)( 25,147)( 26,146)( 27,275)( 28,274)( 29,286)( 30,285)( 31,284)
( 32,283)( 33,282)( 34,281)( 35,280)( 36,279)( 37,278)( 38,277)( 39,276)
( 40,262)( 41,261)( 42,273)( 43,272)( 44,271)( 45,270)( 46,269)( 47,268)
( 48,267)( 49,266)( 50,265)( 51,264)( 52,263)( 53,249)( 54,248)( 55,260)
( 56,259)( 57,258)( 58,257)( 59,256)( 60,255)( 61,254)( 62,253)( 63,252)
( 64,251)( 65,250)( 66,236)( 67,235)( 68,247)( 69,246)( 70,245)( 71,244)
( 72,243)( 73,242)( 74,241)( 75,240)( 76,239)( 77,238)( 78,237)( 79,223)
( 80,222)( 81,234)( 82,233)( 83,232)( 84,231)( 85,230)( 86,229)( 87,228)
( 88,227)( 89,226)( 90,225)( 91,224)( 92,210)( 93,209)( 94,221)( 95,220)
( 96,219)( 97,218)( 98,217)( 99,216)(100,215)(101,214)(102,213)(103,212)
(104,211)(105,197)(106,196)(107,208)(108,207)(109,206)(110,205)(111,204)
(112,203)(113,202)(114,201)(115,200)(116,199)(117,198)(118,184)(119,183)
(120,195)(121,194)(122,193)(123,192)(124,191)(125,190)(126,189)(127,188)
(128,187)(129,186)(130,185)(131,171)(132,170)(133,182)(134,181)(135,180)
(136,179)(137,178)(138,177)(139,176)(140,175)(141,174)(142,173)(143,172);
poly := sub<Sym(286)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope