Polytope of Type {442}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {442}*884
Also Known As : 442-gon, {442}. if this polytope has another name.
Group : SmallGroup(884,14)
Rank : 2
Schlafli Type : {442}
Number of vertices, edges, etc : 442, 442
Order of s0s1 : 442
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {442,2} of size 1768
Vertex Figure Of :
   {2,442} of size 1768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {221}*442
   13-fold quotients : {34}*68
   17-fold quotients : {26}*52
   26-fold quotients : {17}*34
   34-fold quotients : {13}*26
   221-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {884}*1768
Permutation Representation (GAP) :
s0 := (  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)
( 18,205)( 19,221)( 20,220)( 21,219)( 22,218)( 23,217)( 24,216)( 25,215)
( 26,214)( 27,213)( 28,212)( 29,211)( 30,210)( 31,209)( 32,208)( 33,207)
( 34,206)( 35,188)( 36,204)( 37,203)( 38,202)( 39,201)( 40,200)( 41,199)
( 42,198)( 43,197)( 44,196)( 45,195)( 46,194)( 47,193)( 48,192)( 49,191)
( 50,190)( 51,189)( 52,171)( 53,187)( 54,186)( 55,185)( 56,184)( 57,183)
( 58,182)( 59,181)( 60,180)( 61,179)( 62,178)( 63,177)( 64,176)( 65,175)
( 66,174)( 67,173)( 68,172)( 69,154)( 70,170)( 71,169)( 72,168)( 73,167)
( 74,166)( 75,165)( 76,164)( 77,163)( 78,162)( 79,161)( 80,160)( 81,159)
( 82,158)( 83,157)( 84,156)( 85,155)( 86,137)( 87,153)( 88,152)( 89,151)
( 90,150)( 91,149)( 92,148)( 93,147)( 94,146)( 95,145)( 96,144)( 97,143)
( 98,142)( 99,141)(100,140)(101,139)(102,138)(103,120)(104,136)(105,135)
(106,134)(107,133)(108,132)(109,131)(110,130)(111,129)(112,128)(113,127)
(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)(223,238)(224,237)
(225,236)(226,235)(227,234)(228,233)(229,232)(230,231)(239,426)(240,442)
(241,441)(242,440)(243,439)(244,438)(245,437)(246,436)(247,435)(248,434)
(249,433)(250,432)(251,431)(252,430)(253,429)(254,428)(255,427)(256,409)
(257,425)(258,424)(259,423)(260,422)(261,421)(262,420)(263,419)(264,418)
(265,417)(266,416)(267,415)(268,414)(269,413)(270,412)(271,411)(272,410)
(273,392)(274,408)(275,407)(276,406)(277,405)(278,404)(279,403)(280,402)
(281,401)(282,400)(283,399)(284,398)(285,397)(286,396)(287,395)(288,394)
(289,393)(290,375)(291,391)(292,390)(293,389)(294,388)(295,387)(296,386)
(297,385)(298,384)(299,383)(300,382)(301,381)(302,380)(303,379)(304,378)
(305,377)(306,376)(307,358)(308,374)(309,373)(310,372)(311,371)(312,370)
(313,369)(314,368)(315,367)(316,366)(317,365)(318,364)(319,363)(320,362)
(321,361)(322,360)(323,359)(324,341)(325,357)(326,356)(327,355)(328,354)
(329,353)(330,352)(331,351)(332,350)(333,349)(334,348)(335,347)(336,346)
(337,345)(338,344)(339,343)(340,342);;
s1 := (  1,240)(  2,239)(  3,255)(  4,254)(  5,253)(  6,252)(  7,251)(  8,250)
(  9,249)( 10,248)( 11,247)( 12,246)( 13,245)( 14,244)( 15,243)( 16,242)
( 17,241)( 18,223)( 19,222)( 20,238)( 21,237)( 22,236)( 23,235)( 24,234)
( 25,233)( 26,232)( 27,231)( 28,230)( 29,229)( 30,228)( 31,227)( 32,226)
( 33,225)( 34,224)( 35,427)( 36,426)( 37,442)( 38,441)( 39,440)( 40,439)
( 41,438)( 42,437)( 43,436)( 44,435)( 45,434)( 46,433)( 47,432)( 48,431)
( 49,430)( 50,429)( 51,428)( 52,410)( 53,409)( 54,425)( 55,424)( 56,423)
( 57,422)( 58,421)( 59,420)( 60,419)( 61,418)( 62,417)( 63,416)( 64,415)
( 65,414)( 66,413)( 67,412)( 68,411)( 69,393)( 70,392)( 71,408)( 72,407)
( 73,406)( 74,405)( 75,404)( 76,403)( 77,402)( 78,401)( 79,400)( 80,399)
( 81,398)( 82,397)( 83,396)( 84,395)( 85,394)( 86,376)( 87,375)( 88,391)
( 89,390)( 90,389)( 91,388)( 92,387)( 93,386)( 94,385)( 95,384)( 96,383)
( 97,382)( 98,381)( 99,380)(100,379)(101,378)(102,377)(103,359)(104,358)
(105,374)(106,373)(107,372)(108,371)(109,370)(110,369)(111,368)(112,367)
(113,366)(114,365)(115,364)(116,363)(117,362)(118,361)(119,360)(120,342)
(121,341)(122,357)(123,356)(124,355)(125,354)(126,353)(127,352)(128,351)
(129,350)(130,349)(131,348)(132,347)(133,346)(134,345)(135,344)(136,343)
(137,325)(138,324)(139,340)(140,339)(141,338)(142,337)(143,336)(144,335)
(145,334)(146,333)(147,332)(148,331)(149,330)(150,329)(151,328)(152,327)
(153,326)(154,308)(155,307)(156,323)(157,322)(158,321)(159,320)(160,319)
(161,318)(162,317)(163,316)(164,315)(165,314)(166,313)(167,312)(168,311)
(169,310)(170,309)(171,291)(172,290)(173,306)(174,305)(175,304)(176,303)
(177,302)(178,301)(179,300)(180,299)(181,298)(182,297)(183,296)(184,295)
(185,294)(186,293)(187,292)(188,274)(189,273)(190,289)(191,288)(192,287)
(193,286)(194,285)(195,284)(196,283)(197,282)(198,281)(199,280)(200,279)
(201,278)(202,277)(203,276)(204,275)(205,257)(206,256)(207,272)(208,271)
(209,270)(210,269)(211,268)(212,267)(213,266)(214,265)(215,264)(216,263)
(217,262)(218,261)(219,260)(220,259)(221,258);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(442)!(  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)
(  9, 10)( 18,205)( 19,221)( 20,220)( 21,219)( 22,218)( 23,217)( 24,216)
( 25,215)( 26,214)( 27,213)( 28,212)( 29,211)( 30,210)( 31,209)( 32,208)
( 33,207)( 34,206)( 35,188)( 36,204)( 37,203)( 38,202)( 39,201)( 40,200)
( 41,199)( 42,198)( 43,197)( 44,196)( 45,195)( 46,194)( 47,193)( 48,192)
( 49,191)( 50,190)( 51,189)( 52,171)( 53,187)( 54,186)( 55,185)( 56,184)
( 57,183)( 58,182)( 59,181)( 60,180)( 61,179)( 62,178)( 63,177)( 64,176)
( 65,175)( 66,174)( 67,173)( 68,172)( 69,154)( 70,170)( 71,169)( 72,168)
( 73,167)( 74,166)( 75,165)( 76,164)( 77,163)( 78,162)( 79,161)( 80,160)
( 81,159)( 82,158)( 83,157)( 84,156)( 85,155)( 86,137)( 87,153)( 88,152)
( 89,151)( 90,150)( 91,149)( 92,148)( 93,147)( 94,146)( 95,145)( 96,144)
( 97,143)( 98,142)( 99,141)(100,140)(101,139)(102,138)(103,120)(104,136)
(105,135)(106,134)(107,133)(108,132)(109,131)(110,130)(111,129)(112,128)
(113,127)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)(223,238)
(224,237)(225,236)(226,235)(227,234)(228,233)(229,232)(230,231)(239,426)
(240,442)(241,441)(242,440)(243,439)(244,438)(245,437)(246,436)(247,435)
(248,434)(249,433)(250,432)(251,431)(252,430)(253,429)(254,428)(255,427)
(256,409)(257,425)(258,424)(259,423)(260,422)(261,421)(262,420)(263,419)
(264,418)(265,417)(266,416)(267,415)(268,414)(269,413)(270,412)(271,411)
(272,410)(273,392)(274,408)(275,407)(276,406)(277,405)(278,404)(279,403)
(280,402)(281,401)(282,400)(283,399)(284,398)(285,397)(286,396)(287,395)
(288,394)(289,393)(290,375)(291,391)(292,390)(293,389)(294,388)(295,387)
(296,386)(297,385)(298,384)(299,383)(300,382)(301,381)(302,380)(303,379)
(304,378)(305,377)(306,376)(307,358)(308,374)(309,373)(310,372)(311,371)
(312,370)(313,369)(314,368)(315,367)(316,366)(317,365)(318,364)(319,363)
(320,362)(321,361)(322,360)(323,359)(324,341)(325,357)(326,356)(327,355)
(328,354)(329,353)(330,352)(331,351)(332,350)(333,349)(334,348)(335,347)
(336,346)(337,345)(338,344)(339,343)(340,342);
s1 := Sym(442)!(  1,240)(  2,239)(  3,255)(  4,254)(  5,253)(  6,252)(  7,251)
(  8,250)(  9,249)( 10,248)( 11,247)( 12,246)( 13,245)( 14,244)( 15,243)
( 16,242)( 17,241)( 18,223)( 19,222)( 20,238)( 21,237)( 22,236)( 23,235)
( 24,234)( 25,233)( 26,232)( 27,231)( 28,230)( 29,229)( 30,228)( 31,227)
( 32,226)( 33,225)( 34,224)( 35,427)( 36,426)( 37,442)( 38,441)( 39,440)
( 40,439)( 41,438)( 42,437)( 43,436)( 44,435)( 45,434)( 46,433)( 47,432)
( 48,431)( 49,430)( 50,429)( 51,428)( 52,410)( 53,409)( 54,425)( 55,424)
( 56,423)( 57,422)( 58,421)( 59,420)( 60,419)( 61,418)( 62,417)( 63,416)
( 64,415)( 65,414)( 66,413)( 67,412)( 68,411)( 69,393)( 70,392)( 71,408)
( 72,407)( 73,406)( 74,405)( 75,404)( 76,403)( 77,402)( 78,401)( 79,400)
( 80,399)( 81,398)( 82,397)( 83,396)( 84,395)( 85,394)( 86,376)( 87,375)
( 88,391)( 89,390)( 90,389)( 91,388)( 92,387)( 93,386)( 94,385)( 95,384)
( 96,383)( 97,382)( 98,381)( 99,380)(100,379)(101,378)(102,377)(103,359)
(104,358)(105,374)(106,373)(107,372)(108,371)(109,370)(110,369)(111,368)
(112,367)(113,366)(114,365)(115,364)(116,363)(117,362)(118,361)(119,360)
(120,342)(121,341)(122,357)(123,356)(124,355)(125,354)(126,353)(127,352)
(128,351)(129,350)(130,349)(131,348)(132,347)(133,346)(134,345)(135,344)
(136,343)(137,325)(138,324)(139,340)(140,339)(141,338)(142,337)(143,336)
(144,335)(145,334)(146,333)(147,332)(148,331)(149,330)(150,329)(151,328)
(152,327)(153,326)(154,308)(155,307)(156,323)(157,322)(158,321)(159,320)
(160,319)(161,318)(162,317)(163,316)(164,315)(165,314)(166,313)(167,312)
(168,311)(169,310)(170,309)(171,291)(172,290)(173,306)(174,305)(175,304)
(176,303)(177,302)(178,301)(179,300)(180,299)(181,298)(182,297)(183,296)
(184,295)(185,294)(186,293)(187,292)(188,274)(189,273)(190,289)(191,288)
(192,287)(193,286)(194,285)(195,284)(196,283)(197,282)(198,281)(199,280)
(200,279)(201,278)(202,277)(203,276)(204,275)(205,257)(206,256)(207,272)
(208,271)(209,270)(210,269)(211,268)(212,267)(213,266)(214,265)(215,264)
(216,263)(217,262)(218,261)(219,260)(220,259)(221,258);
poly := sub<Sym(442)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope