include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {510}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {510}*1020
Also Known As : 510-gon, {510}. if this polytope has another name.
Group : SmallGroup(1020,36)
Rank : 2
Schlafli Type : {510}
Number of vertices, edges, etc : 510, 510
Order of s0s1 : 510
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {255}*510
3-fold quotients : {170}*340
5-fold quotients : {102}*204
6-fold quotients : {85}*170
10-fold quotients : {51}*102
15-fold quotients : {34}*68
17-fold quotients : {30}*60
30-fold quotients : {17}*34
34-fold quotients : {15}*30
51-fold quotients : {10}*20
85-fold quotients : {6}*12
102-fold quotients : {5}*10
170-fold quotients : {3}*6
255-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)
( 18, 69)( 19, 85)( 20, 84)( 21, 83)( 22, 82)( 23, 81)( 24, 80)( 25, 79)
( 26, 78)( 27, 77)( 28, 76)( 29, 75)( 30, 74)( 31, 73)( 32, 72)( 33, 71)
( 34, 70)( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)( 41, 63)
( 42, 62)( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)( 49, 55)
( 50, 54)( 51, 53)( 86,171)( 87,187)( 88,186)( 89,185)( 90,184)( 91,183)
( 92,182)( 93,181)( 94,180)( 95,179)( 96,178)( 97,177)( 98,176)( 99,175)
(100,174)(101,173)(102,172)(103,239)(104,255)(105,254)(106,253)(107,252)
(108,251)(109,250)(110,249)(111,248)(112,247)(113,246)(114,245)(115,244)
(116,243)(117,242)(118,241)(119,240)(120,222)(121,238)(122,237)(123,236)
(124,235)(125,234)(126,233)(127,232)(128,231)(129,230)(130,229)(131,228)
(132,227)(133,226)(134,225)(135,224)(136,223)(137,205)(138,221)(139,220)
(140,219)(141,218)(142,217)(143,216)(144,215)(145,214)(146,213)(147,212)
(148,211)(149,210)(150,209)(151,208)(152,207)(153,206)(154,188)(155,204)
(156,203)(157,202)(158,201)(159,200)(160,199)(161,198)(162,197)(163,196)
(164,195)(165,194)(166,193)(167,192)(168,191)(169,190)(170,189)(257,272)
(258,271)(259,270)(260,269)(261,268)(262,267)(263,266)(264,265)(273,324)
(274,340)(275,339)(276,338)(277,337)(278,336)(279,335)(280,334)(281,333)
(282,332)(283,331)(284,330)(285,329)(286,328)(287,327)(288,326)(289,325)
(290,307)(291,323)(292,322)(293,321)(294,320)(295,319)(296,318)(297,317)
(298,316)(299,315)(300,314)(301,313)(302,312)(303,311)(304,310)(305,309)
(306,308)(341,426)(342,442)(343,441)(344,440)(345,439)(346,438)(347,437)
(348,436)(349,435)(350,434)(351,433)(352,432)(353,431)(354,430)(355,429)
(356,428)(357,427)(358,494)(359,510)(360,509)(361,508)(362,507)(363,506)
(364,505)(365,504)(366,503)(367,502)(368,501)(369,500)(370,499)(371,498)
(372,497)(373,496)(374,495)(375,477)(376,493)(377,492)(378,491)(379,490)
(380,489)(381,488)(382,487)(383,486)(384,485)(385,484)(386,483)(387,482)
(388,481)(389,480)(390,479)(391,478)(392,460)(393,476)(394,475)(395,474)
(396,473)(397,472)(398,471)(399,470)(400,469)(401,468)(402,467)(403,466)
(404,465)(405,464)(406,463)(407,462)(408,461)(409,443)(410,459)(411,458)
(412,457)(413,456)(414,455)(415,454)(416,453)(417,452)(418,451)(419,450)
(420,449)(421,448)(422,447)(423,446)(424,445)(425,444);;
s1 := ( 1,359)( 2,358)( 3,374)( 4,373)( 5,372)( 6,371)( 7,370)( 8,369)
( 9,368)( 10,367)( 11,366)( 12,365)( 13,364)( 14,363)( 15,362)( 16,361)
( 17,360)( 18,342)( 19,341)( 20,357)( 21,356)( 22,355)( 23,354)( 24,353)
( 25,352)( 26,351)( 27,350)( 28,349)( 29,348)( 30,347)( 31,346)( 32,345)
( 33,344)( 34,343)( 35,410)( 36,409)( 37,425)( 38,424)( 39,423)( 40,422)
( 41,421)( 42,420)( 43,419)( 44,418)( 45,417)( 46,416)( 47,415)( 48,414)
( 49,413)( 50,412)( 51,411)( 52,393)( 53,392)( 54,408)( 55,407)( 56,406)
( 57,405)( 58,404)( 59,403)( 60,402)( 61,401)( 62,400)( 63,399)( 64,398)
( 65,397)( 66,396)( 67,395)( 68,394)( 69,376)( 70,375)( 71,391)( 72,390)
( 73,389)( 74,388)( 75,387)( 76,386)( 77,385)( 78,384)( 79,383)( 80,382)
( 81,381)( 82,380)( 83,379)( 84,378)( 85,377)( 86,274)( 87,273)( 88,289)
( 89,288)( 90,287)( 91,286)( 92,285)( 93,284)( 94,283)( 95,282)( 96,281)
( 97,280)( 98,279)( 99,278)(100,277)(101,276)(102,275)(103,257)(104,256)
(105,272)(106,271)(107,270)(108,269)(109,268)(110,267)(111,266)(112,265)
(113,264)(114,263)(115,262)(116,261)(117,260)(118,259)(119,258)(120,325)
(121,324)(122,340)(123,339)(124,338)(125,337)(126,336)(127,335)(128,334)
(129,333)(130,332)(131,331)(132,330)(133,329)(134,328)(135,327)(136,326)
(137,308)(138,307)(139,323)(140,322)(141,321)(142,320)(143,319)(144,318)
(145,317)(146,316)(147,315)(148,314)(149,313)(150,312)(151,311)(152,310)
(153,309)(154,291)(155,290)(156,306)(157,305)(158,304)(159,303)(160,302)
(161,301)(162,300)(163,299)(164,298)(165,297)(166,296)(167,295)(168,294)
(169,293)(170,292)(171,444)(172,443)(173,459)(174,458)(175,457)(176,456)
(177,455)(178,454)(179,453)(180,452)(181,451)(182,450)(183,449)(184,448)
(185,447)(186,446)(187,445)(188,427)(189,426)(190,442)(191,441)(192,440)
(193,439)(194,438)(195,437)(196,436)(197,435)(198,434)(199,433)(200,432)
(201,431)(202,430)(203,429)(204,428)(205,495)(206,494)(207,510)(208,509)
(209,508)(210,507)(211,506)(212,505)(213,504)(214,503)(215,502)(216,501)
(217,500)(218,499)(219,498)(220,497)(221,496)(222,478)(223,477)(224,493)
(225,492)(226,491)(227,490)(228,489)(229,488)(230,487)(231,486)(232,485)
(233,484)(234,483)(235,482)(236,481)(237,480)(238,479)(239,461)(240,460)
(241,476)(242,475)(243,474)(244,473)(245,472)(246,471)(247,470)(248,469)
(249,468)(250,467)(251,466)(252,465)(253,464)(254,463)(255,462);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(510)!( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)
( 9, 10)( 18, 69)( 19, 85)( 20, 84)( 21, 83)( 22, 82)( 23, 81)( 24, 80)
( 25, 79)( 26, 78)( 27, 77)( 28, 76)( 29, 75)( 30, 74)( 31, 73)( 32, 72)
( 33, 71)( 34, 70)( 35, 52)( 36, 68)( 37, 67)( 38, 66)( 39, 65)( 40, 64)
( 41, 63)( 42, 62)( 43, 61)( 44, 60)( 45, 59)( 46, 58)( 47, 57)( 48, 56)
( 49, 55)( 50, 54)( 51, 53)( 86,171)( 87,187)( 88,186)( 89,185)( 90,184)
( 91,183)( 92,182)( 93,181)( 94,180)( 95,179)( 96,178)( 97,177)( 98,176)
( 99,175)(100,174)(101,173)(102,172)(103,239)(104,255)(105,254)(106,253)
(107,252)(108,251)(109,250)(110,249)(111,248)(112,247)(113,246)(114,245)
(115,244)(116,243)(117,242)(118,241)(119,240)(120,222)(121,238)(122,237)
(123,236)(124,235)(125,234)(126,233)(127,232)(128,231)(129,230)(130,229)
(131,228)(132,227)(133,226)(134,225)(135,224)(136,223)(137,205)(138,221)
(139,220)(140,219)(141,218)(142,217)(143,216)(144,215)(145,214)(146,213)
(147,212)(148,211)(149,210)(150,209)(151,208)(152,207)(153,206)(154,188)
(155,204)(156,203)(157,202)(158,201)(159,200)(160,199)(161,198)(162,197)
(163,196)(164,195)(165,194)(166,193)(167,192)(168,191)(169,190)(170,189)
(257,272)(258,271)(259,270)(260,269)(261,268)(262,267)(263,266)(264,265)
(273,324)(274,340)(275,339)(276,338)(277,337)(278,336)(279,335)(280,334)
(281,333)(282,332)(283,331)(284,330)(285,329)(286,328)(287,327)(288,326)
(289,325)(290,307)(291,323)(292,322)(293,321)(294,320)(295,319)(296,318)
(297,317)(298,316)(299,315)(300,314)(301,313)(302,312)(303,311)(304,310)
(305,309)(306,308)(341,426)(342,442)(343,441)(344,440)(345,439)(346,438)
(347,437)(348,436)(349,435)(350,434)(351,433)(352,432)(353,431)(354,430)
(355,429)(356,428)(357,427)(358,494)(359,510)(360,509)(361,508)(362,507)
(363,506)(364,505)(365,504)(366,503)(367,502)(368,501)(369,500)(370,499)
(371,498)(372,497)(373,496)(374,495)(375,477)(376,493)(377,492)(378,491)
(379,490)(380,489)(381,488)(382,487)(383,486)(384,485)(385,484)(386,483)
(387,482)(388,481)(389,480)(390,479)(391,478)(392,460)(393,476)(394,475)
(395,474)(396,473)(397,472)(398,471)(399,470)(400,469)(401,468)(402,467)
(403,466)(404,465)(405,464)(406,463)(407,462)(408,461)(409,443)(410,459)
(411,458)(412,457)(413,456)(414,455)(415,454)(416,453)(417,452)(418,451)
(419,450)(420,449)(421,448)(422,447)(423,446)(424,445)(425,444);
s1 := Sym(510)!( 1,359)( 2,358)( 3,374)( 4,373)( 5,372)( 6,371)( 7,370)
( 8,369)( 9,368)( 10,367)( 11,366)( 12,365)( 13,364)( 14,363)( 15,362)
( 16,361)( 17,360)( 18,342)( 19,341)( 20,357)( 21,356)( 22,355)( 23,354)
( 24,353)( 25,352)( 26,351)( 27,350)( 28,349)( 29,348)( 30,347)( 31,346)
( 32,345)( 33,344)( 34,343)( 35,410)( 36,409)( 37,425)( 38,424)( 39,423)
( 40,422)( 41,421)( 42,420)( 43,419)( 44,418)( 45,417)( 46,416)( 47,415)
( 48,414)( 49,413)( 50,412)( 51,411)( 52,393)( 53,392)( 54,408)( 55,407)
( 56,406)( 57,405)( 58,404)( 59,403)( 60,402)( 61,401)( 62,400)( 63,399)
( 64,398)( 65,397)( 66,396)( 67,395)( 68,394)( 69,376)( 70,375)( 71,391)
( 72,390)( 73,389)( 74,388)( 75,387)( 76,386)( 77,385)( 78,384)( 79,383)
( 80,382)( 81,381)( 82,380)( 83,379)( 84,378)( 85,377)( 86,274)( 87,273)
( 88,289)( 89,288)( 90,287)( 91,286)( 92,285)( 93,284)( 94,283)( 95,282)
( 96,281)( 97,280)( 98,279)( 99,278)(100,277)(101,276)(102,275)(103,257)
(104,256)(105,272)(106,271)(107,270)(108,269)(109,268)(110,267)(111,266)
(112,265)(113,264)(114,263)(115,262)(116,261)(117,260)(118,259)(119,258)
(120,325)(121,324)(122,340)(123,339)(124,338)(125,337)(126,336)(127,335)
(128,334)(129,333)(130,332)(131,331)(132,330)(133,329)(134,328)(135,327)
(136,326)(137,308)(138,307)(139,323)(140,322)(141,321)(142,320)(143,319)
(144,318)(145,317)(146,316)(147,315)(148,314)(149,313)(150,312)(151,311)
(152,310)(153,309)(154,291)(155,290)(156,306)(157,305)(158,304)(159,303)
(160,302)(161,301)(162,300)(163,299)(164,298)(165,297)(166,296)(167,295)
(168,294)(169,293)(170,292)(171,444)(172,443)(173,459)(174,458)(175,457)
(176,456)(177,455)(178,454)(179,453)(180,452)(181,451)(182,450)(183,449)
(184,448)(185,447)(186,446)(187,445)(188,427)(189,426)(190,442)(191,441)
(192,440)(193,439)(194,438)(195,437)(196,436)(197,435)(198,434)(199,433)
(200,432)(201,431)(202,430)(203,429)(204,428)(205,495)(206,494)(207,510)
(208,509)(209,508)(210,507)(211,506)(212,505)(213,504)(214,503)(215,502)
(216,501)(217,500)(218,499)(219,498)(220,497)(221,496)(222,478)(223,477)
(224,493)(225,492)(226,491)(227,490)(228,489)(229,488)(230,487)(231,486)
(232,485)(233,484)(234,483)(235,482)(236,481)(237,480)(238,479)(239,461)
(240,460)(241,476)(242,475)(243,474)(244,473)(245,472)(246,471)(247,470)
(248,469)(249,468)(250,467)(251,466)(252,465)(253,464)(254,463)(255,462);
poly := sub<Sym(510)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope