Polytope of Type {528}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {528}*1056
Also Known As : 528-gon, {528}. if this polytope has another name.
Group : SmallGroup(1056,158)
Rank : 2
Schlafli Type : {528}
Number of vertices, edges, etc : 528, 528
Order of s0s1 : 528
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {264}*528
   3-fold quotients : {176}*352
   4-fold quotients : {132}*264
   6-fold quotients : {88}*176
   8-fold quotients : {66}*132
   11-fold quotients : {48}*96
   12-fold quotients : {44}*88
   16-fold quotients : {33}*66
   22-fold quotients : {24}*48
   24-fold quotients : {22}*44
   33-fold quotients : {16}*32
   44-fold quotients : {12}*24
   48-fold quotients : {11}*22
   66-fold quotients : {8}*16
   88-fold quotients : {6}*12
   132-fold quotients : {4}*8
   176-fold quotients : {3}*6
   264-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 23)( 13, 33)( 14, 32)
( 15, 31)( 16, 30)( 17, 29)( 18, 28)( 19, 27)( 20, 26)( 21, 25)( 22, 24)
( 35, 44)( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 45, 56)( 46, 66)( 47, 65)
( 48, 64)( 49, 63)( 50, 62)( 51, 61)( 52, 60)( 53, 59)( 54, 58)( 55, 57)
( 67,100)( 68,110)( 69,109)( 70,108)( 71,107)( 72,106)( 73,105)( 74,104)
( 75,103)( 76,102)( 77,101)( 78,122)( 79,132)( 80,131)( 81,130)( 82,129)
( 83,128)( 84,127)( 85,126)( 86,125)( 87,124)( 88,123)( 89,111)( 90,121)
( 91,120)( 92,119)( 93,118)( 94,117)( 95,116)( 96,115)( 97,114)( 98,113)
( 99,112)(133,199)(134,209)(135,208)(136,207)(137,206)(138,205)(139,204)
(140,203)(141,202)(142,201)(143,200)(144,221)(145,231)(146,230)(147,229)
(148,228)(149,227)(150,226)(151,225)(152,224)(153,223)(154,222)(155,210)
(156,220)(157,219)(158,218)(159,217)(160,216)(161,215)(162,214)(163,213)
(164,212)(165,211)(166,232)(167,242)(168,241)(169,240)(170,239)(171,238)
(172,237)(173,236)(174,235)(175,234)(176,233)(177,254)(178,264)(179,263)
(180,262)(181,261)(182,260)(183,259)(184,258)(185,257)(186,256)(187,255)
(188,243)(189,253)(190,252)(191,251)(192,250)(193,249)(194,248)(195,247)
(196,246)(197,245)(198,244)(265,397)(266,407)(267,406)(268,405)(269,404)
(270,403)(271,402)(272,401)(273,400)(274,399)(275,398)(276,419)(277,429)
(278,428)(279,427)(280,426)(281,425)(282,424)(283,423)(284,422)(285,421)
(286,420)(287,408)(288,418)(289,417)(290,416)(291,415)(292,414)(293,413)
(294,412)(295,411)(296,410)(297,409)(298,430)(299,440)(300,439)(301,438)
(302,437)(303,436)(304,435)(305,434)(306,433)(307,432)(308,431)(309,452)
(310,462)(311,461)(312,460)(313,459)(314,458)(315,457)(316,456)(317,455)
(318,454)(319,453)(320,441)(321,451)(322,450)(323,449)(324,448)(325,447)
(326,446)(327,445)(328,444)(329,443)(330,442)(331,496)(332,506)(333,505)
(334,504)(335,503)(336,502)(337,501)(338,500)(339,499)(340,498)(341,497)
(342,518)(343,528)(344,527)(345,526)(346,525)(347,524)(348,523)(349,522)
(350,521)(351,520)(352,519)(353,507)(354,517)(355,516)(356,515)(357,514)
(358,513)(359,512)(360,511)(361,510)(362,509)(363,508)(364,463)(365,473)
(366,472)(367,471)(368,470)(369,469)(370,468)(371,467)(372,466)(373,465)
(374,464)(375,485)(376,495)(377,494)(378,493)(379,492)(380,491)(381,490)
(382,489)(383,488)(384,487)(385,486)(386,474)(387,484)(388,483)(389,482)
(390,481)(391,480)(392,479)(393,478)(394,477)(395,476)(396,475);;
s1 := (  1,277)(  2,276)(  3,286)(  4,285)(  5,284)(  6,283)(  7,282)(  8,281)
(  9,280)( 10,279)( 11,278)( 12,266)( 13,265)( 14,275)( 15,274)( 16,273)
( 17,272)( 18,271)( 19,270)( 20,269)( 21,268)( 22,267)( 23,288)( 24,287)
( 25,297)( 26,296)( 27,295)( 28,294)( 29,293)( 30,292)( 31,291)( 32,290)
( 33,289)( 34,310)( 35,309)( 36,319)( 37,318)( 38,317)( 39,316)( 40,315)
( 41,314)( 42,313)( 43,312)( 44,311)( 45,299)( 46,298)( 47,308)( 48,307)
( 49,306)( 50,305)( 51,304)( 52,303)( 53,302)( 54,301)( 55,300)( 56,321)
( 57,320)( 58,330)( 59,329)( 60,328)( 61,327)( 62,326)( 63,325)( 64,324)
( 65,323)( 66,322)( 67,376)( 68,375)( 69,385)( 70,384)( 71,383)( 72,382)
( 73,381)( 74,380)( 75,379)( 76,378)( 77,377)( 78,365)( 79,364)( 80,374)
( 81,373)( 82,372)( 83,371)( 84,370)( 85,369)( 86,368)( 87,367)( 88,366)
( 89,387)( 90,386)( 91,396)( 92,395)( 93,394)( 94,393)( 95,392)( 96,391)
( 97,390)( 98,389)( 99,388)(100,343)(101,342)(102,352)(103,351)(104,350)
(105,349)(106,348)(107,347)(108,346)(109,345)(110,344)(111,332)(112,331)
(113,341)(114,340)(115,339)(116,338)(117,337)(118,336)(119,335)(120,334)
(121,333)(122,354)(123,353)(124,363)(125,362)(126,361)(127,360)(128,359)
(129,358)(130,357)(131,356)(132,355)(133,475)(134,474)(135,484)(136,483)
(137,482)(138,481)(139,480)(140,479)(141,478)(142,477)(143,476)(144,464)
(145,463)(146,473)(147,472)(148,471)(149,470)(150,469)(151,468)(152,467)
(153,466)(154,465)(155,486)(156,485)(157,495)(158,494)(159,493)(160,492)
(161,491)(162,490)(163,489)(164,488)(165,487)(166,508)(167,507)(168,517)
(169,516)(170,515)(171,514)(172,513)(173,512)(174,511)(175,510)(176,509)
(177,497)(178,496)(179,506)(180,505)(181,504)(182,503)(183,502)(184,501)
(185,500)(186,499)(187,498)(188,519)(189,518)(190,528)(191,527)(192,526)
(193,525)(194,524)(195,523)(196,522)(197,521)(198,520)(199,409)(200,408)
(201,418)(202,417)(203,416)(204,415)(205,414)(206,413)(207,412)(208,411)
(209,410)(210,398)(211,397)(212,407)(213,406)(214,405)(215,404)(216,403)
(217,402)(218,401)(219,400)(220,399)(221,420)(222,419)(223,429)(224,428)
(225,427)(226,426)(227,425)(228,424)(229,423)(230,422)(231,421)(232,442)
(233,441)(234,451)(235,450)(236,449)(237,448)(238,447)(239,446)(240,445)
(241,444)(242,443)(243,431)(244,430)(245,440)(246,439)(247,438)(248,437)
(249,436)(250,435)(251,434)(252,433)(253,432)(254,453)(255,452)(256,462)
(257,461)(258,460)(259,459)(260,458)(261,457)(262,456)(263,455)(264,454);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(528)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 23)( 13, 33)
( 14, 32)( 15, 31)( 16, 30)( 17, 29)( 18, 28)( 19, 27)( 20, 26)( 21, 25)
( 22, 24)( 35, 44)( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 45, 56)( 46, 66)
( 47, 65)( 48, 64)( 49, 63)( 50, 62)( 51, 61)( 52, 60)( 53, 59)( 54, 58)
( 55, 57)( 67,100)( 68,110)( 69,109)( 70,108)( 71,107)( 72,106)( 73,105)
( 74,104)( 75,103)( 76,102)( 77,101)( 78,122)( 79,132)( 80,131)( 81,130)
( 82,129)( 83,128)( 84,127)( 85,126)( 86,125)( 87,124)( 88,123)( 89,111)
( 90,121)( 91,120)( 92,119)( 93,118)( 94,117)( 95,116)( 96,115)( 97,114)
( 98,113)( 99,112)(133,199)(134,209)(135,208)(136,207)(137,206)(138,205)
(139,204)(140,203)(141,202)(142,201)(143,200)(144,221)(145,231)(146,230)
(147,229)(148,228)(149,227)(150,226)(151,225)(152,224)(153,223)(154,222)
(155,210)(156,220)(157,219)(158,218)(159,217)(160,216)(161,215)(162,214)
(163,213)(164,212)(165,211)(166,232)(167,242)(168,241)(169,240)(170,239)
(171,238)(172,237)(173,236)(174,235)(175,234)(176,233)(177,254)(178,264)
(179,263)(180,262)(181,261)(182,260)(183,259)(184,258)(185,257)(186,256)
(187,255)(188,243)(189,253)(190,252)(191,251)(192,250)(193,249)(194,248)
(195,247)(196,246)(197,245)(198,244)(265,397)(266,407)(267,406)(268,405)
(269,404)(270,403)(271,402)(272,401)(273,400)(274,399)(275,398)(276,419)
(277,429)(278,428)(279,427)(280,426)(281,425)(282,424)(283,423)(284,422)
(285,421)(286,420)(287,408)(288,418)(289,417)(290,416)(291,415)(292,414)
(293,413)(294,412)(295,411)(296,410)(297,409)(298,430)(299,440)(300,439)
(301,438)(302,437)(303,436)(304,435)(305,434)(306,433)(307,432)(308,431)
(309,452)(310,462)(311,461)(312,460)(313,459)(314,458)(315,457)(316,456)
(317,455)(318,454)(319,453)(320,441)(321,451)(322,450)(323,449)(324,448)
(325,447)(326,446)(327,445)(328,444)(329,443)(330,442)(331,496)(332,506)
(333,505)(334,504)(335,503)(336,502)(337,501)(338,500)(339,499)(340,498)
(341,497)(342,518)(343,528)(344,527)(345,526)(346,525)(347,524)(348,523)
(349,522)(350,521)(351,520)(352,519)(353,507)(354,517)(355,516)(356,515)
(357,514)(358,513)(359,512)(360,511)(361,510)(362,509)(363,508)(364,463)
(365,473)(366,472)(367,471)(368,470)(369,469)(370,468)(371,467)(372,466)
(373,465)(374,464)(375,485)(376,495)(377,494)(378,493)(379,492)(380,491)
(381,490)(382,489)(383,488)(384,487)(385,486)(386,474)(387,484)(388,483)
(389,482)(390,481)(391,480)(392,479)(393,478)(394,477)(395,476)(396,475);
s1 := Sym(528)!(  1,277)(  2,276)(  3,286)(  4,285)(  5,284)(  6,283)(  7,282)
(  8,281)(  9,280)( 10,279)( 11,278)( 12,266)( 13,265)( 14,275)( 15,274)
( 16,273)( 17,272)( 18,271)( 19,270)( 20,269)( 21,268)( 22,267)( 23,288)
( 24,287)( 25,297)( 26,296)( 27,295)( 28,294)( 29,293)( 30,292)( 31,291)
( 32,290)( 33,289)( 34,310)( 35,309)( 36,319)( 37,318)( 38,317)( 39,316)
( 40,315)( 41,314)( 42,313)( 43,312)( 44,311)( 45,299)( 46,298)( 47,308)
( 48,307)( 49,306)( 50,305)( 51,304)( 52,303)( 53,302)( 54,301)( 55,300)
( 56,321)( 57,320)( 58,330)( 59,329)( 60,328)( 61,327)( 62,326)( 63,325)
( 64,324)( 65,323)( 66,322)( 67,376)( 68,375)( 69,385)( 70,384)( 71,383)
( 72,382)( 73,381)( 74,380)( 75,379)( 76,378)( 77,377)( 78,365)( 79,364)
( 80,374)( 81,373)( 82,372)( 83,371)( 84,370)( 85,369)( 86,368)( 87,367)
( 88,366)( 89,387)( 90,386)( 91,396)( 92,395)( 93,394)( 94,393)( 95,392)
( 96,391)( 97,390)( 98,389)( 99,388)(100,343)(101,342)(102,352)(103,351)
(104,350)(105,349)(106,348)(107,347)(108,346)(109,345)(110,344)(111,332)
(112,331)(113,341)(114,340)(115,339)(116,338)(117,337)(118,336)(119,335)
(120,334)(121,333)(122,354)(123,353)(124,363)(125,362)(126,361)(127,360)
(128,359)(129,358)(130,357)(131,356)(132,355)(133,475)(134,474)(135,484)
(136,483)(137,482)(138,481)(139,480)(140,479)(141,478)(142,477)(143,476)
(144,464)(145,463)(146,473)(147,472)(148,471)(149,470)(150,469)(151,468)
(152,467)(153,466)(154,465)(155,486)(156,485)(157,495)(158,494)(159,493)
(160,492)(161,491)(162,490)(163,489)(164,488)(165,487)(166,508)(167,507)
(168,517)(169,516)(170,515)(171,514)(172,513)(173,512)(174,511)(175,510)
(176,509)(177,497)(178,496)(179,506)(180,505)(181,504)(182,503)(183,502)
(184,501)(185,500)(186,499)(187,498)(188,519)(189,518)(190,528)(191,527)
(192,526)(193,525)(194,524)(195,523)(196,522)(197,521)(198,520)(199,409)
(200,408)(201,418)(202,417)(203,416)(204,415)(205,414)(206,413)(207,412)
(208,411)(209,410)(210,398)(211,397)(212,407)(213,406)(214,405)(215,404)
(216,403)(217,402)(218,401)(219,400)(220,399)(221,420)(222,419)(223,429)
(224,428)(225,427)(226,426)(227,425)(228,424)(229,423)(230,422)(231,421)
(232,442)(233,441)(234,451)(235,450)(236,449)(237,448)(238,447)(239,446)
(240,445)(241,444)(242,443)(243,431)(244,430)(245,440)(246,439)(247,438)
(248,437)(249,436)(250,435)(251,434)(252,433)(253,432)(254,453)(255,452)
(256,462)(257,461)(258,460)(259,459)(260,458)(261,457)(262,456)(263,455)
(264,454);
poly := sub<Sym(528)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope