Polytope of Type {176}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {176}*352
Also Known As : 176-gon, {176}. if this polytope has another name.
Group : SmallGroup(352,5)
Rank : 2
Schlafli Type : {176}
Number of vertices, edges, etc : 176, 176
Order of s0s1 : 176
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {176,2} of size 704
   {176,4} of size 1408
   {176,4} of size 1408
Vertex Figure Of :
   {2,176} of size 704
   {4,176} of size 1408
   {4,176} of size 1408
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {88}*176
   4-fold quotients : {44}*88
   8-fold quotients : {22}*44
   11-fold quotients : {16}*32
   16-fold quotients : {11}*22
   22-fold quotients : {8}*16
   44-fold quotients : {4}*8
   88-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {352}*704
   3-fold covers : {528}*1056
   4-fold covers : {704}*1408
   5-fold covers : {880}*1760
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 13, 22)( 14, 21)( 15, 20)
( 16, 19)( 17, 18)( 23, 34)( 24, 44)( 25, 43)( 26, 42)( 27, 41)( 28, 40)
( 29, 39)( 30, 38)( 31, 37)( 32, 36)( 33, 35)( 45, 67)( 46, 77)( 47, 76)
( 48, 75)( 49, 74)( 50, 73)( 51, 72)( 52, 71)( 53, 70)( 54, 69)( 55, 68)
( 56, 78)( 57, 88)( 58, 87)( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 82)
( 64, 81)( 65, 80)( 66, 79)( 89,133)( 90,143)( 91,142)( 92,141)( 93,140)
( 94,139)( 95,138)( 96,137)( 97,136)( 98,135)( 99,134)(100,144)(101,154)
(102,153)(103,152)(104,151)(105,150)(106,149)(107,148)(108,147)(109,146)
(110,145)(111,166)(112,176)(113,175)(114,174)(115,173)(116,172)(117,171)
(118,170)(119,169)(120,168)(121,167)(122,155)(123,165)(124,164)(125,163)
(126,162)(127,161)(128,160)(129,159)(130,158)(131,157)(132,156);;
s1 := (  1, 90)(  2, 89)(  3, 99)(  4, 98)(  5, 97)(  6, 96)(  7, 95)(  8, 94)
(  9, 93)( 10, 92)( 11, 91)( 12,101)( 13,100)( 14,110)( 15,109)( 16,108)
( 17,107)( 18,106)( 19,105)( 20,104)( 21,103)( 22,102)( 23,123)( 24,122)
( 25,132)( 26,131)( 27,130)( 28,129)( 29,128)( 30,127)( 31,126)( 32,125)
( 33,124)( 34,112)( 35,111)( 36,121)( 37,120)( 38,119)( 39,118)( 40,117)
( 41,116)( 42,115)( 43,114)( 44,113)( 45,156)( 46,155)( 47,165)( 48,164)
( 49,163)( 50,162)( 51,161)( 52,160)( 53,159)( 54,158)( 55,157)( 56,167)
( 57,166)( 58,176)( 59,175)( 60,174)( 61,173)( 62,172)( 63,171)( 64,170)
( 65,169)( 66,168)( 67,134)( 68,133)( 69,143)( 70,142)( 71,141)( 72,140)
( 73,139)( 74,138)( 75,137)( 76,136)( 77,135)( 78,145)( 79,144)( 80,154)
( 81,153)( 82,152)( 83,151)( 84,150)( 85,149)( 86,148)( 87,147)( 88,146);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(176)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 13, 22)( 14, 21)
( 15, 20)( 16, 19)( 17, 18)( 23, 34)( 24, 44)( 25, 43)( 26, 42)( 27, 41)
( 28, 40)( 29, 39)( 30, 38)( 31, 37)( 32, 36)( 33, 35)( 45, 67)( 46, 77)
( 47, 76)( 48, 75)( 49, 74)( 50, 73)( 51, 72)( 52, 71)( 53, 70)( 54, 69)
( 55, 68)( 56, 78)( 57, 88)( 58, 87)( 59, 86)( 60, 85)( 61, 84)( 62, 83)
( 63, 82)( 64, 81)( 65, 80)( 66, 79)( 89,133)( 90,143)( 91,142)( 92,141)
( 93,140)( 94,139)( 95,138)( 96,137)( 97,136)( 98,135)( 99,134)(100,144)
(101,154)(102,153)(103,152)(104,151)(105,150)(106,149)(107,148)(108,147)
(109,146)(110,145)(111,166)(112,176)(113,175)(114,174)(115,173)(116,172)
(117,171)(118,170)(119,169)(120,168)(121,167)(122,155)(123,165)(124,164)
(125,163)(126,162)(127,161)(128,160)(129,159)(130,158)(131,157)(132,156);
s1 := Sym(176)!(  1, 90)(  2, 89)(  3, 99)(  4, 98)(  5, 97)(  6, 96)(  7, 95)
(  8, 94)(  9, 93)( 10, 92)( 11, 91)( 12,101)( 13,100)( 14,110)( 15,109)
( 16,108)( 17,107)( 18,106)( 19,105)( 20,104)( 21,103)( 22,102)( 23,123)
( 24,122)( 25,132)( 26,131)( 27,130)( 28,129)( 29,128)( 30,127)( 31,126)
( 32,125)( 33,124)( 34,112)( 35,111)( 36,121)( 37,120)( 38,119)( 39,118)
( 40,117)( 41,116)( 42,115)( 43,114)( 44,113)( 45,156)( 46,155)( 47,165)
( 48,164)( 49,163)( 50,162)( 51,161)( 52,160)( 53,159)( 54,158)( 55,157)
( 56,167)( 57,166)( 58,176)( 59,175)( 60,174)( 61,173)( 62,172)( 63,171)
( 64,170)( 65,169)( 66,168)( 67,134)( 68,133)( 69,143)( 70,142)( 71,141)
( 72,140)( 73,139)( 74,138)( 75,137)( 76,136)( 77,135)( 78,145)( 79,144)
( 80,154)( 81,153)( 82,152)( 83,151)( 84,150)( 85,149)( 86,148)( 87,147)
( 88,146);
poly := sub<Sym(176)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope