Polytope of Type {560}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {560}*1120
Also Known As : 560-gon, {560}. if this polytope has another name.
Group : SmallGroup(1120,159)
Rank : 2
Schlafli Type : {560}
Number of vertices, edges, etc : 560, 560
Order of s0s1 : 560
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {280}*560
   4-fold quotients : {140}*280
   5-fold quotients : {112}*224
   7-fold quotients : {80}*160
   8-fold quotients : {70}*140
   10-fold quotients : {56}*112
   14-fold quotients : {40}*80
   16-fold quotients : {35}*70
   20-fold quotients : {28}*56
   28-fold quotients : {20}*40
   35-fold quotients : {16}*32
   40-fold quotients : {14}*28
   56-fold quotients : {10}*20
   70-fold quotients : {8}*16
   80-fold quotients : {7}*14
   112-fold quotients : {5}*10
   140-fold quotients : {4}*8
   280-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  7)(  3,  6)(  4,  5)(  8, 29)(  9, 35)( 10, 34)( 11, 33)( 12, 32)
( 13, 31)( 14, 30)( 15, 22)( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)
( 21, 23)( 37, 42)( 38, 41)( 39, 40)( 43, 64)( 44, 70)( 45, 69)( 46, 68)
( 47, 67)( 48, 66)( 49, 65)( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)
( 55, 59)( 56, 58)( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)
( 77,107)( 78,134)( 79,140)( 80,139)( 81,138)( 82,137)( 83,136)( 84,135)
( 85,127)( 86,133)( 87,132)( 88,131)( 89,130)( 90,129)( 91,128)( 92,120)
( 93,126)( 94,125)( 95,124)( 96,123)( 97,122)( 98,121)( 99,113)(100,119)
(101,118)(102,117)(103,116)(104,115)(105,114)(141,211)(142,217)(143,216)
(144,215)(145,214)(146,213)(147,212)(148,239)(149,245)(150,244)(151,243)
(152,242)(153,241)(154,240)(155,232)(156,238)(157,237)(158,236)(159,235)
(160,234)(161,233)(162,225)(163,231)(164,230)(165,229)(166,228)(167,227)
(168,226)(169,218)(170,224)(171,223)(172,222)(173,221)(174,220)(175,219)
(176,246)(177,252)(178,251)(179,250)(180,249)(181,248)(182,247)(183,274)
(184,280)(185,279)(186,278)(187,277)(188,276)(189,275)(190,267)(191,273)
(192,272)(193,271)(194,270)(195,269)(196,268)(197,260)(198,266)(199,265)
(200,264)(201,263)(202,262)(203,261)(204,253)(205,259)(206,258)(207,257)
(208,256)(209,255)(210,254)(281,421)(282,427)(283,426)(284,425)(285,424)
(286,423)(287,422)(288,449)(289,455)(290,454)(291,453)(292,452)(293,451)
(294,450)(295,442)(296,448)(297,447)(298,446)(299,445)(300,444)(301,443)
(302,435)(303,441)(304,440)(305,439)(306,438)(307,437)(308,436)(309,428)
(310,434)(311,433)(312,432)(313,431)(314,430)(315,429)(316,456)(317,462)
(318,461)(319,460)(320,459)(321,458)(322,457)(323,484)(324,490)(325,489)
(326,488)(327,487)(328,486)(329,485)(330,477)(331,483)(332,482)(333,481)
(334,480)(335,479)(336,478)(337,470)(338,476)(339,475)(340,474)(341,473)
(342,472)(343,471)(344,463)(345,469)(346,468)(347,467)(348,466)(349,465)
(350,464)(351,526)(352,532)(353,531)(354,530)(355,529)(356,528)(357,527)
(358,554)(359,560)(360,559)(361,558)(362,557)(363,556)(364,555)(365,547)
(366,553)(367,552)(368,551)(369,550)(370,549)(371,548)(372,540)(373,546)
(374,545)(375,544)(376,543)(377,542)(378,541)(379,533)(380,539)(381,538)
(382,537)(383,536)(384,535)(385,534)(386,491)(387,497)(388,496)(389,495)
(390,494)(391,493)(392,492)(393,519)(394,525)(395,524)(396,523)(397,522)
(398,521)(399,520)(400,512)(401,518)(402,517)(403,516)(404,515)(405,514)
(406,513)(407,505)(408,511)(409,510)(410,509)(411,508)(412,507)(413,506)
(414,498)(415,504)(416,503)(417,502)(418,501)(419,500)(420,499);;
s1 := (  1,289)(  2,288)(  3,294)(  4,293)(  5,292)(  6,291)(  7,290)(  8,282)
(  9,281)( 10,287)( 11,286)( 12,285)( 13,284)( 14,283)( 15,310)( 16,309)
( 17,315)( 18,314)( 19,313)( 20,312)( 21,311)( 22,303)( 23,302)( 24,308)
( 25,307)( 26,306)( 27,305)( 28,304)( 29,296)( 30,295)( 31,301)( 32,300)
( 33,299)( 34,298)( 35,297)( 36,324)( 37,323)( 38,329)( 39,328)( 40,327)
( 41,326)( 42,325)( 43,317)( 44,316)( 45,322)( 46,321)( 47,320)( 48,319)
( 49,318)( 50,345)( 51,344)( 52,350)( 53,349)( 54,348)( 55,347)( 56,346)
( 57,338)( 58,337)( 59,343)( 60,342)( 61,341)( 62,340)( 63,339)( 64,331)
( 65,330)( 66,336)( 67,335)( 68,334)( 69,333)( 70,332)( 71,394)( 72,393)
( 73,399)( 74,398)( 75,397)( 76,396)( 77,395)( 78,387)( 79,386)( 80,392)
( 81,391)( 82,390)( 83,389)( 84,388)( 85,415)( 86,414)( 87,420)( 88,419)
( 89,418)( 90,417)( 91,416)( 92,408)( 93,407)( 94,413)( 95,412)( 96,411)
( 97,410)( 98,409)( 99,401)(100,400)(101,406)(102,405)(103,404)(104,403)
(105,402)(106,359)(107,358)(108,364)(109,363)(110,362)(111,361)(112,360)
(113,352)(114,351)(115,357)(116,356)(117,355)(118,354)(119,353)(120,380)
(121,379)(122,385)(123,384)(124,383)(125,382)(126,381)(127,373)(128,372)
(129,378)(130,377)(131,376)(132,375)(133,374)(134,366)(135,365)(136,371)
(137,370)(138,369)(139,368)(140,367)(141,499)(142,498)(143,504)(144,503)
(145,502)(146,501)(147,500)(148,492)(149,491)(150,497)(151,496)(152,495)
(153,494)(154,493)(155,520)(156,519)(157,525)(158,524)(159,523)(160,522)
(161,521)(162,513)(163,512)(164,518)(165,517)(166,516)(167,515)(168,514)
(169,506)(170,505)(171,511)(172,510)(173,509)(174,508)(175,507)(176,534)
(177,533)(178,539)(179,538)(180,537)(181,536)(182,535)(183,527)(184,526)
(185,532)(186,531)(187,530)(188,529)(189,528)(190,555)(191,554)(192,560)
(193,559)(194,558)(195,557)(196,556)(197,548)(198,547)(199,553)(200,552)
(201,551)(202,550)(203,549)(204,541)(205,540)(206,546)(207,545)(208,544)
(209,543)(210,542)(211,429)(212,428)(213,434)(214,433)(215,432)(216,431)
(217,430)(218,422)(219,421)(220,427)(221,426)(222,425)(223,424)(224,423)
(225,450)(226,449)(227,455)(228,454)(229,453)(230,452)(231,451)(232,443)
(233,442)(234,448)(235,447)(236,446)(237,445)(238,444)(239,436)(240,435)
(241,441)(242,440)(243,439)(244,438)(245,437)(246,464)(247,463)(248,469)
(249,468)(250,467)(251,466)(252,465)(253,457)(254,456)(255,462)(256,461)
(257,460)(258,459)(259,458)(260,485)(261,484)(262,490)(263,489)(264,488)
(265,487)(266,486)(267,478)(268,477)(269,483)(270,482)(271,481)(272,480)
(273,479)(274,471)(275,470)(276,476)(277,475)(278,474)(279,473)(280,472);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(560)!(  2,  7)(  3,  6)(  4,  5)(  8, 29)(  9, 35)( 10, 34)( 11, 33)
( 12, 32)( 13, 31)( 14, 30)( 15, 22)( 16, 28)( 17, 27)( 18, 26)( 19, 25)
( 20, 24)( 21, 23)( 37, 42)( 38, 41)( 39, 40)( 43, 64)( 44, 70)( 45, 69)
( 46, 68)( 47, 67)( 48, 66)( 49, 65)( 50, 57)( 51, 63)( 52, 62)( 53, 61)
( 54, 60)( 55, 59)( 56, 58)( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)
( 76,108)( 77,107)( 78,134)( 79,140)( 80,139)( 81,138)( 82,137)( 83,136)
( 84,135)( 85,127)( 86,133)( 87,132)( 88,131)( 89,130)( 90,129)( 91,128)
( 92,120)( 93,126)( 94,125)( 95,124)( 96,123)( 97,122)( 98,121)( 99,113)
(100,119)(101,118)(102,117)(103,116)(104,115)(105,114)(141,211)(142,217)
(143,216)(144,215)(145,214)(146,213)(147,212)(148,239)(149,245)(150,244)
(151,243)(152,242)(153,241)(154,240)(155,232)(156,238)(157,237)(158,236)
(159,235)(160,234)(161,233)(162,225)(163,231)(164,230)(165,229)(166,228)
(167,227)(168,226)(169,218)(170,224)(171,223)(172,222)(173,221)(174,220)
(175,219)(176,246)(177,252)(178,251)(179,250)(180,249)(181,248)(182,247)
(183,274)(184,280)(185,279)(186,278)(187,277)(188,276)(189,275)(190,267)
(191,273)(192,272)(193,271)(194,270)(195,269)(196,268)(197,260)(198,266)
(199,265)(200,264)(201,263)(202,262)(203,261)(204,253)(205,259)(206,258)
(207,257)(208,256)(209,255)(210,254)(281,421)(282,427)(283,426)(284,425)
(285,424)(286,423)(287,422)(288,449)(289,455)(290,454)(291,453)(292,452)
(293,451)(294,450)(295,442)(296,448)(297,447)(298,446)(299,445)(300,444)
(301,443)(302,435)(303,441)(304,440)(305,439)(306,438)(307,437)(308,436)
(309,428)(310,434)(311,433)(312,432)(313,431)(314,430)(315,429)(316,456)
(317,462)(318,461)(319,460)(320,459)(321,458)(322,457)(323,484)(324,490)
(325,489)(326,488)(327,487)(328,486)(329,485)(330,477)(331,483)(332,482)
(333,481)(334,480)(335,479)(336,478)(337,470)(338,476)(339,475)(340,474)
(341,473)(342,472)(343,471)(344,463)(345,469)(346,468)(347,467)(348,466)
(349,465)(350,464)(351,526)(352,532)(353,531)(354,530)(355,529)(356,528)
(357,527)(358,554)(359,560)(360,559)(361,558)(362,557)(363,556)(364,555)
(365,547)(366,553)(367,552)(368,551)(369,550)(370,549)(371,548)(372,540)
(373,546)(374,545)(375,544)(376,543)(377,542)(378,541)(379,533)(380,539)
(381,538)(382,537)(383,536)(384,535)(385,534)(386,491)(387,497)(388,496)
(389,495)(390,494)(391,493)(392,492)(393,519)(394,525)(395,524)(396,523)
(397,522)(398,521)(399,520)(400,512)(401,518)(402,517)(403,516)(404,515)
(405,514)(406,513)(407,505)(408,511)(409,510)(410,509)(411,508)(412,507)
(413,506)(414,498)(415,504)(416,503)(417,502)(418,501)(419,500)(420,499);
s1 := Sym(560)!(  1,289)(  2,288)(  3,294)(  4,293)(  5,292)(  6,291)(  7,290)
(  8,282)(  9,281)( 10,287)( 11,286)( 12,285)( 13,284)( 14,283)( 15,310)
( 16,309)( 17,315)( 18,314)( 19,313)( 20,312)( 21,311)( 22,303)( 23,302)
( 24,308)( 25,307)( 26,306)( 27,305)( 28,304)( 29,296)( 30,295)( 31,301)
( 32,300)( 33,299)( 34,298)( 35,297)( 36,324)( 37,323)( 38,329)( 39,328)
( 40,327)( 41,326)( 42,325)( 43,317)( 44,316)( 45,322)( 46,321)( 47,320)
( 48,319)( 49,318)( 50,345)( 51,344)( 52,350)( 53,349)( 54,348)( 55,347)
( 56,346)( 57,338)( 58,337)( 59,343)( 60,342)( 61,341)( 62,340)( 63,339)
( 64,331)( 65,330)( 66,336)( 67,335)( 68,334)( 69,333)( 70,332)( 71,394)
( 72,393)( 73,399)( 74,398)( 75,397)( 76,396)( 77,395)( 78,387)( 79,386)
( 80,392)( 81,391)( 82,390)( 83,389)( 84,388)( 85,415)( 86,414)( 87,420)
( 88,419)( 89,418)( 90,417)( 91,416)( 92,408)( 93,407)( 94,413)( 95,412)
( 96,411)( 97,410)( 98,409)( 99,401)(100,400)(101,406)(102,405)(103,404)
(104,403)(105,402)(106,359)(107,358)(108,364)(109,363)(110,362)(111,361)
(112,360)(113,352)(114,351)(115,357)(116,356)(117,355)(118,354)(119,353)
(120,380)(121,379)(122,385)(123,384)(124,383)(125,382)(126,381)(127,373)
(128,372)(129,378)(130,377)(131,376)(132,375)(133,374)(134,366)(135,365)
(136,371)(137,370)(138,369)(139,368)(140,367)(141,499)(142,498)(143,504)
(144,503)(145,502)(146,501)(147,500)(148,492)(149,491)(150,497)(151,496)
(152,495)(153,494)(154,493)(155,520)(156,519)(157,525)(158,524)(159,523)
(160,522)(161,521)(162,513)(163,512)(164,518)(165,517)(166,516)(167,515)
(168,514)(169,506)(170,505)(171,511)(172,510)(173,509)(174,508)(175,507)
(176,534)(177,533)(178,539)(179,538)(180,537)(181,536)(182,535)(183,527)
(184,526)(185,532)(186,531)(187,530)(188,529)(189,528)(190,555)(191,554)
(192,560)(193,559)(194,558)(195,557)(196,556)(197,548)(198,547)(199,553)
(200,552)(201,551)(202,550)(203,549)(204,541)(205,540)(206,546)(207,545)
(208,544)(209,543)(210,542)(211,429)(212,428)(213,434)(214,433)(215,432)
(216,431)(217,430)(218,422)(219,421)(220,427)(221,426)(222,425)(223,424)
(224,423)(225,450)(226,449)(227,455)(228,454)(229,453)(230,452)(231,451)
(232,443)(233,442)(234,448)(235,447)(236,446)(237,445)(238,444)(239,436)
(240,435)(241,441)(242,440)(243,439)(244,438)(245,437)(246,464)(247,463)
(248,469)(249,468)(250,467)(251,466)(252,465)(253,457)(254,456)(255,462)
(256,461)(257,460)(258,459)(259,458)(260,485)(261,484)(262,490)(263,489)
(264,488)(265,487)(266,486)(267,478)(268,477)(269,483)(270,482)(271,481)
(272,480)(273,479)(274,471)(275,470)(276,476)(277,475)(278,474)(279,473)
(280,472);
poly := sub<Sym(560)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope