Polytope of Type {592}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {592}*1184
Also Known As : 592-gon, {592}. if this polytope has another name.
Group : SmallGroup(1184,88)
Rank : 2
Schlafli Type : {592}
Number of vertices, edges, etc : 592, 592
Order of s0s1 : 592
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {296}*592
   4-fold quotients : {148}*296
   8-fold quotients : {74}*148
   16-fold quotients : {37}*74
   37-fold quotients : {16}*32
   74-fold quotients : {8}*16
   148-fold quotients : {4}*8
   296-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 37)(  3, 36)(  4, 35)(  5, 34)(  6, 33)(  7, 32)(  8, 31)(  9, 30)
( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)( 17, 22)
( 18, 21)( 19, 20)( 39, 74)( 40, 73)( 41, 72)( 42, 71)( 43, 70)( 44, 69)
( 45, 68)( 46, 67)( 47, 66)( 48, 65)( 49, 64)( 50, 63)( 51, 62)( 52, 61)
( 53, 60)( 54, 59)( 55, 58)( 56, 57)( 75,112)( 76,148)( 77,147)( 78,146)
( 79,145)( 80,144)( 81,143)( 82,142)( 83,141)( 84,140)( 85,139)( 86,138)
( 87,137)( 88,136)( 89,135)( 90,134)( 91,133)( 92,132)( 93,131)( 94,130)
( 95,129)( 96,128)( 97,127)( 98,126)( 99,125)(100,124)(101,123)(102,122)
(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)
(111,113)(149,223)(150,259)(151,258)(152,257)(153,256)(154,255)(155,254)
(156,253)(157,252)(158,251)(159,250)(160,249)(161,248)(162,247)(163,246)
(164,245)(165,244)(166,243)(167,242)(168,241)(169,240)(170,239)(171,238)
(172,237)(173,236)(174,235)(175,234)(176,233)(177,232)(178,231)(179,230)
(180,229)(181,228)(182,227)(183,226)(184,225)(185,224)(186,260)(187,296)
(188,295)(189,294)(190,293)(191,292)(192,291)(193,290)(194,289)(195,288)
(196,287)(197,286)(198,285)(199,284)(200,283)(201,282)(202,281)(203,280)
(204,279)(205,278)(206,277)(207,276)(208,275)(209,274)(210,273)(211,272)
(212,271)(213,270)(214,269)(215,268)(216,267)(217,266)(218,265)(219,264)
(220,263)(221,262)(222,261)(297,445)(298,481)(299,480)(300,479)(301,478)
(302,477)(303,476)(304,475)(305,474)(306,473)(307,472)(308,471)(309,470)
(310,469)(311,468)(312,467)(313,466)(314,465)(315,464)(316,463)(317,462)
(318,461)(319,460)(320,459)(321,458)(322,457)(323,456)(324,455)(325,454)
(326,453)(327,452)(328,451)(329,450)(330,449)(331,448)(332,447)(333,446)
(334,482)(335,518)(336,517)(337,516)(338,515)(339,514)(340,513)(341,512)
(342,511)(343,510)(344,509)(345,508)(346,507)(347,506)(348,505)(349,504)
(350,503)(351,502)(352,501)(353,500)(354,499)(355,498)(356,497)(357,496)
(358,495)(359,494)(360,493)(361,492)(362,491)(363,490)(364,489)(365,488)
(366,487)(367,486)(368,485)(369,484)(370,483)(371,556)(372,592)(373,591)
(374,590)(375,589)(376,588)(377,587)(378,586)(379,585)(380,584)(381,583)
(382,582)(383,581)(384,580)(385,579)(386,578)(387,577)(388,576)(389,575)
(390,574)(391,573)(392,572)(393,571)(394,570)(395,569)(396,568)(397,567)
(398,566)(399,565)(400,564)(401,563)(402,562)(403,561)(404,560)(405,559)
(406,558)(407,557)(408,519)(409,555)(410,554)(411,553)(412,552)(413,551)
(414,550)(415,549)(416,548)(417,547)(418,546)(419,545)(420,544)(421,543)
(422,542)(423,541)(424,540)(425,539)(426,538)(427,537)(428,536)(429,535)
(430,534)(431,533)(432,532)(433,531)(434,530)(435,529)(436,528)(437,527)
(438,526)(439,525)(440,524)(441,523)(442,522)(443,521)(444,520);;
s1 := (  1,298)(  2,297)(  3,333)(  4,332)(  5,331)(  6,330)(  7,329)(  8,328)
(  9,327)( 10,326)( 11,325)( 12,324)( 13,323)( 14,322)( 15,321)( 16,320)
( 17,319)( 18,318)( 19,317)( 20,316)( 21,315)( 22,314)( 23,313)( 24,312)
( 25,311)( 26,310)( 27,309)( 28,308)( 29,307)( 30,306)( 31,305)( 32,304)
( 33,303)( 34,302)( 35,301)( 36,300)( 37,299)( 38,335)( 39,334)( 40,370)
( 41,369)( 42,368)( 43,367)( 44,366)( 45,365)( 46,364)( 47,363)( 48,362)
( 49,361)( 50,360)( 51,359)( 52,358)( 53,357)( 54,356)( 55,355)( 56,354)
( 57,353)( 58,352)( 59,351)( 60,350)( 61,349)( 62,348)( 63,347)( 64,346)
( 65,345)( 66,344)( 67,343)( 68,342)( 69,341)( 70,340)( 71,339)( 72,338)
( 73,337)( 74,336)( 75,409)( 76,408)( 77,444)( 78,443)( 79,442)( 80,441)
( 81,440)( 82,439)( 83,438)( 84,437)( 85,436)( 86,435)( 87,434)( 88,433)
( 89,432)( 90,431)( 91,430)( 92,429)( 93,428)( 94,427)( 95,426)( 96,425)
( 97,424)( 98,423)( 99,422)(100,421)(101,420)(102,419)(103,418)(104,417)
(105,416)(106,415)(107,414)(108,413)(109,412)(110,411)(111,410)(112,372)
(113,371)(114,407)(115,406)(116,405)(117,404)(118,403)(119,402)(120,401)
(121,400)(122,399)(123,398)(124,397)(125,396)(126,395)(127,394)(128,393)
(129,392)(130,391)(131,390)(132,389)(133,388)(134,387)(135,386)(136,385)
(137,384)(138,383)(139,382)(140,381)(141,380)(142,379)(143,378)(144,377)
(145,376)(146,375)(147,374)(148,373)(149,520)(150,519)(151,555)(152,554)
(153,553)(154,552)(155,551)(156,550)(157,549)(158,548)(159,547)(160,546)
(161,545)(162,544)(163,543)(164,542)(165,541)(166,540)(167,539)(168,538)
(169,537)(170,536)(171,535)(172,534)(173,533)(174,532)(175,531)(176,530)
(177,529)(178,528)(179,527)(180,526)(181,525)(182,524)(183,523)(184,522)
(185,521)(186,557)(187,556)(188,592)(189,591)(190,590)(191,589)(192,588)
(193,587)(194,586)(195,585)(196,584)(197,583)(198,582)(199,581)(200,580)
(201,579)(202,578)(203,577)(204,576)(205,575)(206,574)(207,573)(208,572)
(209,571)(210,570)(211,569)(212,568)(213,567)(214,566)(215,565)(216,564)
(217,563)(218,562)(219,561)(220,560)(221,559)(222,558)(223,446)(224,445)
(225,481)(226,480)(227,479)(228,478)(229,477)(230,476)(231,475)(232,474)
(233,473)(234,472)(235,471)(236,470)(237,469)(238,468)(239,467)(240,466)
(241,465)(242,464)(243,463)(244,462)(245,461)(246,460)(247,459)(248,458)
(249,457)(250,456)(251,455)(252,454)(253,453)(254,452)(255,451)(256,450)
(257,449)(258,448)(259,447)(260,483)(261,482)(262,518)(263,517)(264,516)
(265,515)(266,514)(267,513)(268,512)(269,511)(270,510)(271,509)(272,508)
(273,507)(274,506)(275,505)(276,504)(277,503)(278,502)(279,501)(280,500)
(281,499)(282,498)(283,497)(284,496)(285,495)(286,494)(287,493)(288,492)
(289,491)(290,490)(291,489)(292,488)(293,487)(294,486)(295,485)(296,484);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(592)!(  2, 37)(  3, 36)(  4, 35)(  5, 34)(  6, 33)(  7, 32)(  8, 31)
(  9, 30)( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)
( 17, 22)( 18, 21)( 19, 20)( 39, 74)( 40, 73)( 41, 72)( 42, 71)( 43, 70)
( 44, 69)( 45, 68)( 46, 67)( 47, 66)( 48, 65)( 49, 64)( 50, 63)( 51, 62)
( 52, 61)( 53, 60)( 54, 59)( 55, 58)( 56, 57)( 75,112)( 76,148)( 77,147)
( 78,146)( 79,145)( 80,144)( 81,143)( 82,142)( 83,141)( 84,140)( 85,139)
( 86,138)( 87,137)( 88,136)( 89,135)( 90,134)( 91,133)( 92,132)( 93,131)
( 94,130)( 95,129)( 96,128)( 97,127)( 98,126)( 99,125)(100,124)(101,123)
(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)
(110,114)(111,113)(149,223)(150,259)(151,258)(152,257)(153,256)(154,255)
(155,254)(156,253)(157,252)(158,251)(159,250)(160,249)(161,248)(162,247)
(163,246)(164,245)(165,244)(166,243)(167,242)(168,241)(169,240)(170,239)
(171,238)(172,237)(173,236)(174,235)(175,234)(176,233)(177,232)(178,231)
(179,230)(180,229)(181,228)(182,227)(183,226)(184,225)(185,224)(186,260)
(187,296)(188,295)(189,294)(190,293)(191,292)(192,291)(193,290)(194,289)
(195,288)(196,287)(197,286)(198,285)(199,284)(200,283)(201,282)(202,281)
(203,280)(204,279)(205,278)(206,277)(207,276)(208,275)(209,274)(210,273)
(211,272)(212,271)(213,270)(214,269)(215,268)(216,267)(217,266)(218,265)
(219,264)(220,263)(221,262)(222,261)(297,445)(298,481)(299,480)(300,479)
(301,478)(302,477)(303,476)(304,475)(305,474)(306,473)(307,472)(308,471)
(309,470)(310,469)(311,468)(312,467)(313,466)(314,465)(315,464)(316,463)
(317,462)(318,461)(319,460)(320,459)(321,458)(322,457)(323,456)(324,455)
(325,454)(326,453)(327,452)(328,451)(329,450)(330,449)(331,448)(332,447)
(333,446)(334,482)(335,518)(336,517)(337,516)(338,515)(339,514)(340,513)
(341,512)(342,511)(343,510)(344,509)(345,508)(346,507)(347,506)(348,505)
(349,504)(350,503)(351,502)(352,501)(353,500)(354,499)(355,498)(356,497)
(357,496)(358,495)(359,494)(360,493)(361,492)(362,491)(363,490)(364,489)
(365,488)(366,487)(367,486)(368,485)(369,484)(370,483)(371,556)(372,592)
(373,591)(374,590)(375,589)(376,588)(377,587)(378,586)(379,585)(380,584)
(381,583)(382,582)(383,581)(384,580)(385,579)(386,578)(387,577)(388,576)
(389,575)(390,574)(391,573)(392,572)(393,571)(394,570)(395,569)(396,568)
(397,567)(398,566)(399,565)(400,564)(401,563)(402,562)(403,561)(404,560)
(405,559)(406,558)(407,557)(408,519)(409,555)(410,554)(411,553)(412,552)
(413,551)(414,550)(415,549)(416,548)(417,547)(418,546)(419,545)(420,544)
(421,543)(422,542)(423,541)(424,540)(425,539)(426,538)(427,537)(428,536)
(429,535)(430,534)(431,533)(432,532)(433,531)(434,530)(435,529)(436,528)
(437,527)(438,526)(439,525)(440,524)(441,523)(442,522)(443,521)(444,520);
s1 := Sym(592)!(  1,298)(  2,297)(  3,333)(  4,332)(  5,331)(  6,330)(  7,329)
(  8,328)(  9,327)( 10,326)( 11,325)( 12,324)( 13,323)( 14,322)( 15,321)
( 16,320)( 17,319)( 18,318)( 19,317)( 20,316)( 21,315)( 22,314)( 23,313)
( 24,312)( 25,311)( 26,310)( 27,309)( 28,308)( 29,307)( 30,306)( 31,305)
( 32,304)( 33,303)( 34,302)( 35,301)( 36,300)( 37,299)( 38,335)( 39,334)
( 40,370)( 41,369)( 42,368)( 43,367)( 44,366)( 45,365)( 46,364)( 47,363)
( 48,362)( 49,361)( 50,360)( 51,359)( 52,358)( 53,357)( 54,356)( 55,355)
( 56,354)( 57,353)( 58,352)( 59,351)( 60,350)( 61,349)( 62,348)( 63,347)
( 64,346)( 65,345)( 66,344)( 67,343)( 68,342)( 69,341)( 70,340)( 71,339)
( 72,338)( 73,337)( 74,336)( 75,409)( 76,408)( 77,444)( 78,443)( 79,442)
( 80,441)( 81,440)( 82,439)( 83,438)( 84,437)( 85,436)( 86,435)( 87,434)
( 88,433)( 89,432)( 90,431)( 91,430)( 92,429)( 93,428)( 94,427)( 95,426)
( 96,425)( 97,424)( 98,423)( 99,422)(100,421)(101,420)(102,419)(103,418)
(104,417)(105,416)(106,415)(107,414)(108,413)(109,412)(110,411)(111,410)
(112,372)(113,371)(114,407)(115,406)(116,405)(117,404)(118,403)(119,402)
(120,401)(121,400)(122,399)(123,398)(124,397)(125,396)(126,395)(127,394)
(128,393)(129,392)(130,391)(131,390)(132,389)(133,388)(134,387)(135,386)
(136,385)(137,384)(138,383)(139,382)(140,381)(141,380)(142,379)(143,378)
(144,377)(145,376)(146,375)(147,374)(148,373)(149,520)(150,519)(151,555)
(152,554)(153,553)(154,552)(155,551)(156,550)(157,549)(158,548)(159,547)
(160,546)(161,545)(162,544)(163,543)(164,542)(165,541)(166,540)(167,539)
(168,538)(169,537)(170,536)(171,535)(172,534)(173,533)(174,532)(175,531)
(176,530)(177,529)(178,528)(179,527)(180,526)(181,525)(182,524)(183,523)
(184,522)(185,521)(186,557)(187,556)(188,592)(189,591)(190,590)(191,589)
(192,588)(193,587)(194,586)(195,585)(196,584)(197,583)(198,582)(199,581)
(200,580)(201,579)(202,578)(203,577)(204,576)(205,575)(206,574)(207,573)
(208,572)(209,571)(210,570)(211,569)(212,568)(213,567)(214,566)(215,565)
(216,564)(217,563)(218,562)(219,561)(220,560)(221,559)(222,558)(223,446)
(224,445)(225,481)(226,480)(227,479)(228,478)(229,477)(230,476)(231,475)
(232,474)(233,473)(234,472)(235,471)(236,470)(237,469)(238,468)(239,467)
(240,466)(241,465)(242,464)(243,463)(244,462)(245,461)(246,460)(247,459)
(248,458)(249,457)(250,456)(251,455)(252,454)(253,453)(254,452)(255,451)
(256,450)(257,449)(258,448)(259,447)(260,483)(261,482)(262,518)(263,517)
(264,516)(265,515)(266,514)(267,513)(268,512)(269,511)(270,510)(271,509)
(272,508)(273,507)(274,506)(275,505)(276,504)(277,503)(278,502)(279,501)
(280,500)(281,499)(282,498)(283,497)(284,496)(285,495)(286,494)(287,493)
(288,492)(289,491)(290,490)(291,489)(292,488)(293,487)(294,486)(295,485)
(296,484);
poly := sub<Sym(592)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope