Polytope of Type {296}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {296}*592
Also Known As : 296-gon, {296}. if this polytope has another name.
Group : SmallGroup(592,7)
Rank : 2
Schlafli Type : {296}
Number of vertices, edges, etc : 296, 296
Order of s0s1 : 296
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {296,2} of size 1184
Vertex Figure Of :
   {2,296} of size 1184
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {148}*296
   4-fold quotients : {74}*148
   8-fold quotients : {37}*74
   37-fold quotients : {8}*16
   74-fold quotients : {4}*8
   148-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {592}*1184
   3-fold covers : {888}*1776
Permutation Representation (GAP) :
s0 := (  2, 37)(  3, 36)(  4, 35)(  5, 34)(  6, 33)(  7, 32)(  8, 31)(  9, 30)
( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)( 17, 22)
( 18, 21)( 19, 20)( 39, 74)( 40, 73)( 41, 72)( 42, 71)( 43, 70)( 44, 69)
( 45, 68)( 46, 67)( 47, 66)( 48, 65)( 49, 64)( 50, 63)( 51, 62)( 52, 61)
( 53, 60)( 54, 59)( 55, 58)( 56, 57)( 75,112)( 76,148)( 77,147)( 78,146)
( 79,145)( 80,144)( 81,143)( 82,142)( 83,141)( 84,140)( 85,139)( 86,138)
( 87,137)( 88,136)( 89,135)( 90,134)( 91,133)( 92,132)( 93,131)( 94,130)
( 95,129)( 96,128)( 97,127)( 98,126)( 99,125)(100,124)(101,123)(102,122)
(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)
(111,113)(149,223)(150,259)(151,258)(152,257)(153,256)(154,255)(155,254)
(156,253)(157,252)(158,251)(159,250)(160,249)(161,248)(162,247)(163,246)
(164,245)(165,244)(166,243)(167,242)(168,241)(169,240)(170,239)(171,238)
(172,237)(173,236)(174,235)(175,234)(176,233)(177,232)(178,231)(179,230)
(180,229)(181,228)(182,227)(183,226)(184,225)(185,224)(186,260)(187,296)
(188,295)(189,294)(190,293)(191,292)(192,291)(193,290)(194,289)(195,288)
(196,287)(197,286)(198,285)(199,284)(200,283)(201,282)(202,281)(203,280)
(204,279)(205,278)(206,277)(207,276)(208,275)(209,274)(210,273)(211,272)
(212,271)(213,270)(214,269)(215,268)(216,267)(217,266)(218,265)(219,264)
(220,263)(221,262)(222,261);;
s1 := (  1,150)(  2,149)(  3,185)(  4,184)(  5,183)(  6,182)(  7,181)(  8,180)
(  9,179)( 10,178)( 11,177)( 12,176)( 13,175)( 14,174)( 15,173)( 16,172)
( 17,171)( 18,170)( 19,169)( 20,168)( 21,167)( 22,166)( 23,165)( 24,164)
( 25,163)( 26,162)( 27,161)( 28,160)( 29,159)( 30,158)( 31,157)( 32,156)
( 33,155)( 34,154)( 35,153)( 36,152)( 37,151)( 38,187)( 39,186)( 40,222)
( 41,221)( 42,220)( 43,219)( 44,218)( 45,217)( 46,216)( 47,215)( 48,214)
( 49,213)( 50,212)( 51,211)( 52,210)( 53,209)( 54,208)( 55,207)( 56,206)
( 57,205)( 58,204)( 59,203)( 60,202)( 61,201)( 62,200)( 63,199)( 64,198)
( 65,197)( 66,196)( 67,195)( 68,194)( 69,193)( 70,192)( 71,191)( 72,190)
( 73,189)( 74,188)( 75,261)( 76,260)( 77,296)( 78,295)( 79,294)( 80,293)
( 81,292)( 82,291)( 83,290)( 84,289)( 85,288)( 86,287)( 87,286)( 88,285)
( 89,284)( 90,283)( 91,282)( 92,281)( 93,280)( 94,279)( 95,278)( 96,277)
( 97,276)( 98,275)( 99,274)(100,273)(101,272)(102,271)(103,270)(104,269)
(105,268)(106,267)(107,266)(108,265)(109,264)(110,263)(111,262)(112,224)
(113,223)(114,259)(115,258)(116,257)(117,256)(118,255)(119,254)(120,253)
(121,252)(122,251)(123,250)(124,249)(125,248)(126,247)(127,246)(128,245)
(129,244)(130,243)(131,242)(132,241)(133,240)(134,239)(135,238)(136,237)
(137,236)(138,235)(139,234)(140,233)(141,232)(142,231)(143,230)(144,229)
(145,228)(146,227)(147,226)(148,225);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(296)!(  2, 37)(  3, 36)(  4, 35)(  5, 34)(  6, 33)(  7, 32)(  8, 31)
(  9, 30)( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)
( 17, 22)( 18, 21)( 19, 20)( 39, 74)( 40, 73)( 41, 72)( 42, 71)( 43, 70)
( 44, 69)( 45, 68)( 46, 67)( 47, 66)( 48, 65)( 49, 64)( 50, 63)( 51, 62)
( 52, 61)( 53, 60)( 54, 59)( 55, 58)( 56, 57)( 75,112)( 76,148)( 77,147)
( 78,146)( 79,145)( 80,144)( 81,143)( 82,142)( 83,141)( 84,140)( 85,139)
( 86,138)( 87,137)( 88,136)( 89,135)( 90,134)( 91,133)( 92,132)( 93,131)
( 94,130)( 95,129)( 96,128)( 97,127)( 98,126)( 99,125)(100,124)(101,123)
(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)
(110,114)(111,113)(149,223)(150,259)(151,258)(152,257)(153,256)(154,255)
(155,254)(156,253)(157,252)(158,251)(159,250)(160,249)(161,248)(162,247)
(163,246)(164,245)(165,244)(166,243)(167,242)(168,241)(169,240)(170,239)
(171,238)(172,237)(173,236)(174,235)(175,234)(176,233)(177,232)(178,231)
(179,230)(180,229)(181,228)(182,227)(183,226)(184,225)(185,224)(186,260)
(187,296)(188,295)(189,294)(190,293)(191,292)(192,291)(193,290)(194,289)
(195,288)(196,287)(197,286)(198,285)(199,284)(200,283)(201,282)(202,281)
(203,280)(204,279)(205,278)(206,277)(207,276)(208,275)(209,274)(210,273)
(211,272)(212,271)(213,270)(214,269)(215,268)(216,267)(217,266)(218,265)
(219,264)(220,263)(221,262)(222,261);
s1 := Sym(296)!(  1,150)(  2,149)(  3,185)(  4,184)(  5,183)(  6,182)(  7,181)
(  8,180)(  9,179)( 10,178)( 11,177)( 12,176)( 13,175)( 14,174)( 15,173)
( 16,172)( 17,171)( 18,170)( 19,169)( 20,168)( 21,167)( 22,166)( 23,165)
( 24,164)( 25,163)( 26,162)( 27,161)( 28,160)( 29,159)( 30,158)( 31,157)
( 32,156)( 33,155)( 34,154)( 35,153)( 36,152)( 37,151)( 38,187)( 39,186)
( 40,222)( 41,221)( 42,220)( 43,219)( 44,218)( 45,217)( 46,216)( 47,215)
( 48,214)( 49,213)( 50,212)( 51,211)( 52,210)( 53,209)( 54,208)( 55,207)
( 56,206)( 57,205)( 58,204)( 59,203)( 60,202)( 61,201)( 62,200)( 63,199)
( 64,198)( 65,197)( 66,196)( 67,195)( 68,194)( 69,193)( 70,192)( 71,191)
( 72,190)( 73,189)( 74,188)( 75,261)( 76,260)( 77,296)( 78,295)( 79,294)
( 80,293)( 81,292)( 82,291)( 83,290)( 84,289)( 85,288)( 86,287)( 87,286)
( 88,285)( 89,284)( 90,283)( 91,282)( 92,281)( 93,280)( 94,279)( 95,278)
( 96,277)( 97,276)( 98,275)( 99,274)(100,273)(101,272)(102,271)(103,270)
(104,269)(105,268)(106,267)(107,266)(108,265)(109,264)(110,263)(111,262)
(112,224)(113,223)(114,259)(115,258)(116,257)(117,256)(118,255)(119,254)
(120,253)(121,252)(122,251)(123,250)(124,249)(125,248)(126,247)(127,246)
(128,245)(129,244)(130,243)(131,242)(132,241)(133,240)(134,239)(135,238)
(136,237)(137,236)(138,235)(139,234)(140,233)(141,232)(142,231)(143,230)
(144,229)(145,228)(146,227)(147,226)(148,225);
poly := sub<Sym(296)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope