Polytope of Type {2,38}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,38}*152
if this polytope has a name.
Group : SmallGroup(152,11)
Rank : 3
Schlafli Type : {2,38}
Number of vertices, edges, etc : 2, 38, 38
Order of s0s1s2 : 38
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,38,2} of size 304
   {2,38,4} of size 608
   {2,38,6} of size 912
   {2,38,8} of size 1216
   {2,38,10} of size 1520
   {2,38,12} of size 1824
Vertex Figure Of :
   {2,2,38} of size 304
   {3,2,38} of size 456
   {4,2,38} of size 608
   {5,2,38} of size 760
   {6,2,38} of size 912
   {7,2,38} of size 1064
   {8,2,38} of size 1216
   {9,2,38} of size 1368
   {10,2,38} of size 1520
   {11,2,38} of size 1672
   {12,2,38} of size 1824
   {13,2,38} of size 1976
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,19}*76
   19-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,76}*304, {4,38}*304
   3-fold covers : {6,38}*456, {2,114}*456
   4-fold covers : {4,76}*608, {2,152}*608, {8,38}*608
   5-fold covers : {10,38}*760, {2,190}*760
   6-fold covers : {12,38}*912, {6,76}*912a, {2,228}*912, {4,114}*912a
   7-fold covers : {14,38}*1064, {2,266}*1064
   8-fold covers : {8,76}*1216a, {4,152}*1216a, {8,76}*1216b, {4,152}*1216b, {4,76}*1216, {16,38}*1216, {2,304}*1216
   9-fold covers : {18,38}*1368, {2,342}*1368, {6,114}*1368a, {6,114}*1368b, {6,114}*1368c
   10-fold covers : {20,38}*1520, {10,76}*1520, {2,380}*1520, {4,190}*1520
   11-fold covers : {22,38}*1672, {2,418}*1672
   12-fold covers : {24,38}*1824, {6,152}*1824, {12,76}*1824, {4,228}*1824a, {2,456}*1824, {8,114}*1824, {6,76}*1824, {6,114}*1824, {4,114}*1824
   13-fold covers : {26,38}*1976, {2,494}*1976
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40);;
s2 := ( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,23)(20,21)
(22,27)(24,25)(26,31)(28,29)(30,35)(32,33)(34,39)(36,37)(38,40);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(40)!(1,2);
s1 := Sym(40)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40);
s2 := Sym(40)!( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,23)
(20,21)(22,27)(24,25)(26,31)(28,29)(30,35)(32,33)(34,39)(36,37)(38,40);
poly := sub<Sym(40)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope