include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,38}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,38}*304
if this polytope has a name.
Group : SmallGroup(304,41)
Rank : 4
Schlafli Type : {2,2,38}
Number of vertices, edges, etc : 2, 2, 38, 38
Order of s0s1s2s3 : 38
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,38,2} of size 608
{2,2,38,4} of size 1216
{2,2,38,6} of size 1824
Vertex Figure Of :
{2,2,2,38} of size 608
{3,2,2,38} of size 912
{4,2,2,38} of size 1216
{5,2,2,38} of size 1520
{6,2,2,38} of size 1824
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,19}*152
19-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,2,76}*608, {2,4,38}*608, {4,2,38}*608
3-fold covers : {2,6,38}*912, {6,2,38}*912, {2,2,114}*912
4-fold covers : {4,4,38}*1216, {2,4,76}*1216, {4,2,76}*1216, {2,8,38}*1216, {8,2,38}*1216, {2,2,152}*1216
5-fold covers : {2,10,38}*1520, {10,2,38}*1520, {2,2,190}*1520
6-fold covers : {2,12,38}*1824, {12,2,38}*1824, {2,6,76}*1824a, {6,2,76}*1824, {4,6,38}*1824a, {6,4,38}*1824, {2,2,228}*1824, {2,4,114}*1824a, {4,2,114}*1824
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)
(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42);;
s3 := ( 5, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)(20,25)(22,23)
(24,29)(26,27)(28,33)(30,31)(32,37)(34,35)(36,41)(38,39)(40,42);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(42)!(1,2);
s1 := Sym(42)!(3,4);
s2 := Sym(42)!( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42);
s3 := Sym(42)!( 5, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)(20,25)
(22,23)(24,29)(26,27)(28,33)(30,31)(32,37)(34,35)(36,41)(38,39)(40,42);
poly := sub<Sym(42)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope