include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,38}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,38}*456
if this polytope has a name.
Group : SmallGroup(456,47)
Rank : 4
Schlafli Type : {3,2,38}
Number of vertices, edges, etc : 3, 3, 38, 38
Order of s0s1s2s3 : 114
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,38,2} of size 912
{3,2,38,4} of size 1824
Vertex Figure Of :
{2,3,2,38} of size 912
{3,3,2,38} of size 1824
{4,3,2,38} of size 1824
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,19}*228
19-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,76}*912, {6,2,38}*912
3-fold covers : {9,2,38}*1368, {3,6,38}*1368, {3,2,114}*1368
4-fold covers : {3,2,152}*1824, {12,2,38}*1824, {6,2,76}*1824, {6,4,38}*1824, {3,4,38}*1824
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)
(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41);;
s3 := ( 4, 8)( 5, 6)( 7,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,24)(21,22)
(23,28)(25,26)(27,32)(29,30)(31,36)(33,34)(35,40)(37,38)(39,41);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(41)!(2,3);
s1 := Sym(41)!(1,2);
s2 := Sym(41)!( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41);
s3 := Sym(41)!( 4, 8)( 5, 6)( 7,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,24)
(21,22)(23,28)(25,26)(27,32)(29,30)(31,36)(33,34)(35,40)(37,38)(39,41);
poly := sub<Sym(41)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope