include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,28}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,28}*336
if this polytope has a name.
Group : SmallGroup(336,149)
Rank : 4
Schlafli Type : {3,2,28}
Number of vertices, edges, etc : 3, 3, 28, 28
Order of s0s1s2s3 : 84
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,28,2} of size 672
{3,2,28,4} of size 1344
Vertex Figure Of :
{2,3,2,28} of size 672
{3,3,2,28} of size 1344
{4,3,2,28} of size 1344
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,14}*168
4-fold quotients : {3,2,7}*84
7-fold quotients : {3,2,4}*48
14-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,56}*672, {6,2,28}*672
3-fold covers : {9,2,28}*1008, {3,6,28}*1008, {3,2,84}*1008
4-fold covers : {3,2,112}*1344, {12,2,28}*1344, {6,4,28}*1344, {6,2,56}*1344, {3,4,28}*1344
5-fold covers : {15,2,28}*1680, {3,2,140}*1680
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 7, 8)(10,13)(11,12)(14,15)(16,17)(18,21)(19,20)(22,23)(24,25)
(26,29)(27,28)(30,31);;
s3 := ( 4,10)( 5, 7)( 6,16)( 8,18)( 9,12)(11,14)(13,24)(15,26)(17,20)(19,22)
(21,30)(23,27)(25,28)(29,31);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(31)!(2,3);
s1 := Sym(31)!(1,2);
s2 := Sym(31)!( 5, 6)( 7, 8)(10,13)(11,12)(14,15)(16,17)(18,21)(19,20)(22,23)
(24,25)(26,29)(27,28)(30,31);
s3 := Sym(31)!( 4,10)( 5, 7)( 6,16)( 8,18)( 9,12)(11,14)(13,24)(15,26)(17,20)
(19,22)(21,30)(23,27)(25,28)(29,31);
poly := sub<Sym(31)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope