Polytope of Type {104,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {104,2}*416
if this polytope has a name.
Group : SmallGroup(416,124)
Rank : 3
Schlafli Type : {104,2}
Number of vertices, edges, etc : 104, 104, 2
Order of s0s1s2 : 104
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {104,2,2} of size 832
   {104,2,3} of size 1248
   {104,2,4} of size 1664
Vertex Figure Of :
   {2,104,2} of size 832
   {4,104,2} of size 1664
   {4,104,2} of size 1664
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {52,2}*208
   4-fold quotients : {26,2}*104
   8-fold quotients : {13,2}*52
   13-fold quotients : {8,2}*32
   26-fold quotients : {4,2}*16
   52-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {104,4}*832a, {208,2}*832
   3-fold covers : {104,6}*1248, {312,2}*1248
   4-fold covers : {104,4}*1664a, {104,8}*1664b, {104,8}*1664c, {208,4}*1664a, {208,4}*1664b, {416,2}*1664
Permutation Representation (GAP) :
s0 := (  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 15, 26)( 16, 25)
( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 27, 40)( 28, 52)( 29, 51)( 30, 50)
( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)( 38, 42)
( 39, 41)( 53, 79)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)( 59, 86)
( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 92)( 67,104)
( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)
( 76, 95)( 77, 94)( 78, 93);;
s1 := (  1, 54)(  2, 53)(  3, 65)(  4, 64)(  5, 63)(  6, 62)(  7, 61)(  8, 60)
(  9, 59)( 10, 58)( 11, 57)( 12, 56)( 13, 55)( 14, 67)( 15, 66)( 16, 78)
( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 72)( 23, 71)( 24, 70)
( 25, 69)( 26, 68)( 27, 93)( 28, 92)( 29,104)( 30,103)( 31,102)( 32,101)
( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39, 94)( 40, 80)
( 41, 79)( 42, 91)( 43, 90)( 44, 89)( 45, 88)( 46, 87)( 47, 86)( 48, 85)
( 49, 84)( 50, 83)( 51, 82)( 52, 81);;
s2 := (105,106);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(106)!(  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 15, 26)
( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 27, 40)( 28, 52)( 29, 51)
( 30, 50)( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 44)( 37, 43)
( 38, 42)( 39, 41)( 53, 79)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)
( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 92)
( 67,104)( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)
( 75, 96)( 76, 95)( 77, 94)( 78, 93);
s1 := Sym(106)!(  1, 54)(  2, 53)(  3, 65)(  4, 64)(  5, 63)(  6, 62)(  7, 61)
(  8, 60)(  9, 59)( 10, 58)( 11, 57)( 12, 56)( 13, 55)( 14, 67)( 15, 66)
( 16, 78)( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 72)( 23, 71)
( 24, 70)( 25, 69)( 26, 68)( 27, 93)( 28, 92)( 29,104)( 30,103)( 31,102)
( 32,101)( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39, 94)
( 40, 80)( 41, 79)( 42, 91)( 43, 90)( 44, 89)( 45, 88)( 46, 87)( 47, 86)
( 48, 85)( 49, 84)( 50, 83)( 51, 82)( 52, 81);
s2 := Sym(106)!(105,106);
poly := sub<Sym(106)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope