include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {504}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {504}*1008
Also Known As : 504-gon, {504}. if this polytope has another name.
Group : SmallGroup(1008,94)
Rank : 2
Schlafli Type : {504}
Number of vertices, edges, etc : 504, 504
Order of s0s1 : 504
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {252}*504
3-fold quotients : {168}*336
4-fold quotients : {126}*252
6-fold quotients : {84}*168
7-fold quotients : {72}*144
8-fold quotients : {63}*126
9-fold quotients : {56}*112
12-fold quotients : {42}*84
14-fold quotients : {36}*72
18-fold quotients : {28}*56
21-fold quotients : {24}*48
24-fold quotients : {21}*42
28-fold quotients : {18}*36
36-fold quotients : {14}*28
42-fold quotients : {12}*24
56-fold quotients : {9}*18
63-fold quotients : {8}*16
72-fold quotients : {7}*14
84-fold quotients : {6}*12
126-fold quotients : {4}*8
168-fold quotients : {3}*6
252-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 19)( 5, 21)( 6, 20)( 7, 16)( 8, 18)( 9, 17)( 10, 13)
( 11, 15)( 12, 14)( 22, 45)( 23, 44)( 24, 43)( 25, 63)( 26, 62)( 27, 61)
( 28, 60)( 29, 59)( 30, 58)( 31, 57)( 32, 56)( 33, 55)( 34, 54)( 35, 53)
( 36, 52)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)( 65, 66)
( 67, 82)( 68, 84)( 69, 83)( 70, 79)( 71, 81)( 72, 80)( 73, 76)( 74, 78)
( 75, 77)( 85,108)( 86,107)( 87,106)( 88,126)( 89,125)( 90,124)( 91,123)
( 92,122)( 93,121)( 94,120)( 95,119)( 96,118)( 97,117)( 98,116)( 99,115)
(100,114)(101,113)(102,112)(103,111)(104,110)(105,109)(127,190)(128,192)
(129,191)(130,208)(131,210)(132,209)(133,205)(134,207)(135,206)(136,202)
(137,204)(138,203)(139,199)(140,201)(141,200)(142,196)(143,198)(144,197)
(145,193)(146,195)(147,194)(148,234)(149,233)(150,232)(151,252)(152,251)
(153,250)(154,249)(155,248)(156,247)(157,246)(158,245)(159,244)(160,243)
(161,242)(162,241)(163,240)(164,239)(165,238)(166,237)(167,236)(168,235)
(169,213)(170,212)(171,211)(172,231)(173,230)(174,229)(175,228)(176,227)
(177,226)(178,225)(179,224)(180,223)(181,222)(182,221)(183,220)(184,219)
(185,218)(186,217)(187,216)(188,215)(189,214)(253,379)(254,381)(255,380)
(256,397)(257,399)(258,398)(259,394)(260,396)(261,395)(262,391)(263,393)
(264,392)(265,388)(266,390)(267,389)(268,385)(269,387)(270,386)(271,382)
(272,384)(273,383)(274,423)(275,422)(276,421)(277,441)(278,440)(279,439)
(280,438)(281,437)(282,436)(283,435)(284,434)(285,433)(286,432)(287,431)
(288,430)(289,429)(290,428)(291,427)(292,426)(293,425)(294,424)(295,402)
(296,401)(297,400)(298,420)(299,419)(300,418)(301,417)(302,416)(303,415)
(304,414)(305,413)(306,412)(307,411)(308,410)(309,409)(310,408)(311,407)
(312,406)(313,405)(314,404)(315,403)(316,442)(317,444)(318,443)(319,460)
(320,462)(321,461)(322,457)(323,459)(324,458)(325,454)(326,456)(327,455)
(328,451)(329,453)(330,452)(331,448)(332,450)(333,449)(334,445)(335,447)
(336,446)(337,486)(338,485)(339,484)(340,504)(341,503)(342,502)(343,501)
(344,500)(345,499)(346,498)(347,497)(348,496)(349,495)(350,494)(351,493)
(352,492)(353,491)(354,490)(355,489)(356,488)(357,487)(358,465)(359,464)
(360,463)(361,483)(362,482)(363,481)(364,480)(365,479)(366,478)(367,477)
(368,476)(369,475)(370,474)(371,473)(372,472)(373,471)(374,470)(375,469)
(376,468)(377,467)(378,466);;
s1 := ( 1,277)( 2,279)( 3,278)( 4,274)( 5,276)( 6,275)( 7,292)( 8,294)
( 9,293)( 10,289)( 11,291)( 12,290)( 13,286)( 14,288)( 15,287)( 16,283)
( 17,285)( 18,284)( 19,280)( 20,282)( 21,281)( 22,256)( 23,258)( 24,257)
( 25,253)( 26,255)( 27,254)( 28,271)( 29,273)( 30,272)( 31,268)( 32,270)
( 33,269)( 34,265)( 35,267)( 36,266)( 37,262)( 38,264)( 39,263)( 40,259)
( 41,261)( 42,260)( 43,300)( 44,299)( 45,298)( 46,297)( 47,296)( 48,295)
( 49,315)( 50,314)( 51,313)( 52,312)( 53,311)( 54,310)( 55,309)( 56,308)
( 57,307)( 58,306)( 59,305)( 60,304)( 61,303)( 62,302)( 63,301)( 64,340)
( 65,342)( 66,341)( 67,337)( 68,339)( 69,338)( 70,355)( 71,357)( 72,356)
( 73,352)( 74,354)( 75,353)( 76,349)( 77,351)( 78,350)( 79,346)( 80,348)
( 81,347)( 82,343)( 83,345)( 84,344)( 85,319)( 86,321)( 87,320)( 88,316)
( 89,318)( 90,317)( 91,334)( 92,336)( 93,335)( 94,331)( 95,333)( 96,332)
( 97,328)( 98,330)( 99,329)(100,325)(101,327)(102,326)(103,322)(104,324)
(105,323)(106,363)(107,362)(108,361)(109,360)(110,359)(111,358)(112,378)
(113,377)(114,376)(115,375)(116,374)(117,373)(118,372)(119,371)(120,370)
(121,369)(122,368)(123,367)(124,366)(125,365)(126,364)(127,466)(128,468)
(129,467)(130,463)(131,465)(132,464)(133,481)(134,483)(135,482)(136,478)
(137,480)(138,479)(139,475)(140,477)(141,476)(142,472)(143,474)(144,473)
(145,469)(146,471)(147,470)(148,445)(149,447)(150,446)(151,442)(152,444)
(153,443)(154,460)(155,462)(156,461)(157,457)(158,459)(159,458)(160,454)
(161,456)(162,455)(163,451)(164,453)(165,452)(166,448)(167,450)(168,449)
(169,489)(170,488)(171,487)(172,486)(173,485)(174,484)(175,504)(176,503)
(177,502)(178,501)(179,500)(180,499)(181,498)(182,497)(183,496)(184,495)
(185,494)(186,493)(187,492)(188,491)(189,490)(190,403)(191,405)(192,404)
(193,400)(194,402)(195,401)(196,418)(197,420)(198,419)(199,415)(200,417)
(201,416)(202,412)(203,414)(204,413)(205,409)(206,411)(207,410)(208,406)
(209,408)(210,407)(211,382)(212,384)(213,383)(214,379)(215,381)(216,380)
(217,397)(218,399)(219,398)(220,394)(221,396)(222,395)(223,391)(224,393)
(225,392)(226,388)(227,390)(228,389)(229,385)(230,387)(231,386)(232,426)
(233,425)(234,424)(235,423)(236,422)(237,421)(238,441)(239,440)(240,439)
(241,438)(242,437)(243,436)(244,435)(245,434)(246,433)(247,432)(248,431)
(249,430)(250,429)(251,428)(252,427);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(504)!( 2, 3)( 4, 19)( 5, 21)( 6, 20)( 7, 16)( 8, 18)( 9, 17)
( 10, 13)( 11, 15)( 12, 14)( 22, 45)( 23, 44)( 24, 43)( 25, 63)( 26, 62)
( 27, 61)( 28, 60)( 29, 59)( 30, 58)( 31, 57)( 32, 56)( 33, 55)( 34, 54)
( 35, 53)( 36, 52)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)
( 65, 66)( 67, 82)( 68, 84)( 69, 83)( 70, 79)( 71, 81)( 72, 80)( 73, 76)
( 74, 78)( 75, 77)( 85,108)( 86,107)( 87,106)( 88,126)( 89,125)( 90,124)
( 91,123)( 92,122)( 93,121)( 94,120)( 95,119)( 96,118)( 97,117)( 98,116)
( 99,115)(100,114)(101,113)(102,112)(103,111)(104,110)(105,109)(127,190)
(128,192)(129,191)(130,208)(131,210)(132,209)(133,205)(134,207)(135,206)
(136,202)(137,204)(138,203)(139,199)(140,201)(141,200)(142,196)(143,198)
(144,197)(145,193)(146,195)(147,194)(148,234)(149,233)(150,232)(151,252)
(152,251)(153,250)(154,249)(155,248)(156,247)(157,246)(158,245)(159,244)
(160,243)(161,242)(162,241)(163,240)(164,239)(165,238)(166,237)(167,236)
(168,235)(169,213)(170,212)(171,211)(172,231)(173,230)(174,229)(175,228)
(176,227)(177,226)(178,225)(179,224)(180,223)(181,222)(182,221)(183,220)
(184,219)(185,218)(186,217)(187,216)(188,215)(189,214)(253,379)(254,381)
(255,380)(256,397)(257,399)(258,398)(259,394)(260,396)(261,395)(262,391)
(263,393)(264,392)(265,388)(266,390)(267,389)(268,385)(269,387)(270,386)
(271,382)(272,384)(273,383)(274,423)(275,422)(276,421)(277,441)(278,440)
(279,439)(280,438)(281,437)(282,436)(283,435)(284,434)(285,433)(286,432)
(287,431)(288,430)(289,429)(290,428)(291,427)(292,426)(293,425)(294,424)
(295,402)(296,401)(297,400)(298,420)(299,419)(300,418)(301,417)(302,416)
(303,415)(304,414)(305,413)(306,412)(307,411)(308,410)(309,409)(310,408)
(311,407)(312,406)(313,405)(314,404)(315,403)(316,442)(317,444)(318,443)
(319,460)(320,462)(321,461)(322,457)(323,459)(324,458)(325,454)(326,456)
(327,455)(328,451)(329,453)(330,452)(331,448)(332,450)(333,449)(334,445)
(335,447)(336,446)(337,486)(338,485)(339,484)(340,504)(341,503)(342,502)
(343,501)(344,500)(345,499)(346,498)(347,497)(348,496)(349,495)(350,494)
(351,493)(352,492)(353,491)(354,490)(355,489)(356,488)(357,487)(358,465)
(359,464)(360,463)(361,483)(362,482)(363,481)(364,480)(365,479)(366,478)
(367,477)(368,476)(369,475)(370,474)(371,473)(372,472)(373,471)(374,470)
(375,469)(376,468)(377,467)(378,466);
s1 := Sym(504)!( 1,277)( 2,279)( 3,278)( 4,274)( 5,276)( 6,275)( 7,292)
( 8,294)( 9,293)( 10,289)( 11,291)( 12,290)( 13,286)( 14,288)( 15,287)
( 16,283)( 17,285)( 18,284)( 19,280)( 20,282)( 21,281)( 22,256)( 23,258)
( 24,257)( 25,253)( 26,255)( 27,254)( 28,271)( 29,273)( 30,272)( 31,268)
( 32,270)( 33,269)( 34,265)( 35,267)( 36,266)( 37,262)( 38,264)( 39,263)
( 40,259)( 41,261)( 42,260)( 43,300)( 44,299)( 45,298)( 46,297)( 47,296)
( 48,295)( 49,315)( 50,314)( 51,313)( 52,312)( 53,311)( 54,310)( 55,309)
( 56,308)( 57,307)( 58,306)( 59,305)( 60,304)( 61,303)( 62,302)( 63,301)
( 64,340)( 65,342)( 66,341)( 67,337)( 68,339)( 69,338)( 70,355)( 71,357)
( 72,356)( 73,352)( 74,354)( 75,353)( 76,349)( 77,351)( 78,350)( 79,346)
( 80,348)( 81,347)( 82,343)( 83,345)( 84,344)( 85,319)( 86,321)( 87,320)
( 88,316)( 89,318)( 90,317)( 91,334)( 92,336)( 93,335)( 94,331)( 95,333)
( 96,332)( 97,328)( 98,330)( 99,329)(100,325)(101,327)(102,326)(103,322)
(104,324)(105,323)(106,363)(107,362)(108,361)(109,360)(110,359)(111,358)
(112,378)(113,377)(114,376)(115,375)(116,374)(117,373)(118,372)(119,371)
(120,370)(121,369)(122,368)(123,367)(124,366)(125,365)(126,364)(127,466)
(128,468)(129,467)(130,463)(131,465)(132,464)(133,481)(134,483)(135,482)
(136,478)(137,480)(138,479)(139,475)(140,477)(141,476)(142,472)(143,474)
(144,473)(145,469)(146,471)(147,470)(148,445)(149,447)(150,446)(151,442)
(152,444)(153,443)(154,460)(155,462)(156,461)(157,457)(158,459)(159,458)
(160,454)(161,456)(162,455)(163,451)(164,453)(165,452)(166,448)(167,450)
(168,449)(169,489)(170,488)(171,487)(172,486)(173,485)(174,484)(175,504)
(176,503)(177,502)(178,501)(179,500)(180,499)(181,498)(182,497)(183,496)
(184,495)(185,494)(186,493)(187,492)(188,491)(189,490)(190,403)(191,405)
(192,404)(193,400)(194,402)(195,401)(196,418)(197,420)(198,419)(199,415)
(200,417)(201,416)(202,412)(203,414)(204,413)(205,409)(206,411)(207,410)
(208,406)(209,408)(210,407)(211,382)(212,384)(213,383)(214,379)(215,381)
(216,380)(217,397)(218,399)(219,398)(220,394)(221,396)(222,395)(223,391)
(224,393)(225,392)(226,388)(227,390)(228,389)(229,385)(230,387)(231,386)
(232,426)(233,425)(234,424)(235,423)(236,422)(237,421)(238,441)(239,440)
(240,439)(241,438)(242,437)(243,436)(244,435)(245,434)(246,433)(247,432)
(248,431)(249,430)(250,429)(251,428)(252,427);
poly := sub<Sym(504)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope