include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {540}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {540}*1080
Also Known As : 540-gon, {540}. if this polytope has another name.
Group : SmallGroup(1080,27)
Rank : 2
Schlafli Type : {540}
Number of vertices, edges, etc : 540, 540
Order of s0s1 : 540
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {270}*540
3-fold quotients : {180}*360
4-fold quotients : {135}*270
5-fold quotients : {108}*216
6-fold quotients : {90}*180
9-fold quotients : {60}*120
10-fold quotients : {54}*108
12-fold quotients : {45}*90
15-fold quotients : {36}*72
18-fold quotients : {30}*60
20-fold quotients : {27}*54
27-fold quotients : {20}*40
30-fold quotients : {18}*36
36-fold quotients : {15}*30
45-fold quotients : {12}*24
54-fold quotients : {10}*20
60-fold quotients : {9}*18
90-fold quotients : {6}*12
108-fold quotients : {5}*10
135-fold quotients : {4}*8
180-fold quotients : {3}*6
270-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 9)( 5, 8)( 6, 7)( 10, 37)( 11, 39)( 12, 38)( 13, 45)
( 14, 44)( 15, 43)( 16, 42)( 17, 41)( 18, 40)( 19, 28)( 20, 30)( 21, 29)
( 22, 36)( 23, 35)( 24, 34)( 25, 33)( 26, 32)( 27, 31)( 46, 99)( 47, 98)
( 48, 97)( 49, 96)( 50, 95)( 51, 94)( 52, 93)( 53, 92)( 54, 91)( 55,135)
( 56,134)( 57,133)( 58,132)( 59,131)( 60,130)( 61,129)( 62,128)( 63,127)
( 64,126)( 65,125)( 66,124)( 67,123)( 68,122)( 69,121)( 70,120)( 71,119)
( 72,118)( 73,117)( 74,116)( 75,115)( 76,114)( 77,113)( 78,112)( 79,111)
( 80,110)( 81,109)( 82,108)( 83,107)( 84,106)( 85,105)( 86,104)( 87,103)
( 88,102)( 89,101)( 90,100)(137,138)(139,144)(140,143)(141,142)(145,172)
(146,174)(147,173)(148,180)(149,179)(150,178)(151,177)(152,176)(153,175)
(154,163)(155,165)(156,164)(157,171)(158,170)(159,169)(160,168)(161,167)
(162,166)(181,234)(182,233)(183,232)(184,231)(185,230)(186,229)(187,228)
(188,227)(189,226)(190,270)(191,269)(192,268)(193,267)(194,266)(195,265)
(196,264)(197,263)(198,262)(199,261)(200,260)(201,259)(202,258)(203,257)
(204,256)(205,255)(206,254)(207,253)(208,252)(209,251)(210,250)(211,249)
(212,248)(213,247)(214,246)(215,245)(216,244)(217,243)(218,242)(219,241)
(220,240)(221,239)(222,238)(223,237)(224,236)(225,235)(271,406)(272,408)
(273,407)(274,414)(275,413)(276,412)(277,411)(278,410)(279,409)(280,442)
(281,444)(282,443)(283,450)(284,449)(285,448)(286,447)(287,446)(288,445)
(289,433)(290,435)(291,434)(292,441)(293,440)(294,439)(295,438)(296,437)
(297,436)(298,424)(299,426)(300,425)(301,432)(302,431)(303,430)(304,429)
(305,428)(306,427)(307,415)(308,417)(309,416)(310,423)(311,422)(312,421)
(313,420)(314,419)(315,418)(316,504)(317,503)(318,502)(319,501)(320,500)
(321,499)(322,498)(323,497)(324,496)(325,540)(326,539)(327,538)(328,537)
(329,536)(330,535)(331,534)(332,533)(333,532)(334,531)(335,530)(336,529)
(337,528)(338,527)(339,526)(340,525)(341,524)(342,523)(343,522)(344,521)
(345,520)(346,519)(347,518)(348,517)(349,516)(350,515)(351,514)(352,513)
(353,512)(354,511)(355,510)(356,509)(357,508)(358,507)(359,506)(360,505)
(361,459)(362,458)(363,457)(364,456)(365,455)(366,454)(367,453)(368,452)
(369,451)(370,495)(371,494)(372,493)(373,492)(374,491)(375,490)(376,489)
(377,488)(378,487)(379,486)(380,485)(381,484)(382,483)(383,482)(384,481)
(385,480)(386,479)(387,478)(388,477)(389,476)(390,475)(391,474)(392,473)
(393,472)(394,471)(395,470)(396,469)(397,468)(398,467)(399,466)(400,465)
(401,464)(402,463)(403,462)(404,461)(405,460);;
s1 := ( 1,325)( 2,327)( 3,326)( 4,333)( 5,332)( 6,331)( 7,330)( 8,329)
( 9,328)( 10,316)( 11,318)( 12,317)( 13,324)( 14,323)( 15,322)( 16,321)
( 17,320)( 18,319)( 19,352)( 20,354)( 21,353)( 22,360)( 23,359)( 24,358)
( 25,357)( 26,356)( 27,355)( 28,343)( 29,345)( 30,344)( 31,351)( 32,350)
( 33,349)( 34,348)( 35,347)( 36,346)( 37,334)( 38,336)( 39,335)( 40,342)
( 41,341)( 42,340)( 43,339)( 44,338)( 45,337)( 46,280)( 47,282)( 48,281)
( 49,288)( 50,287)( 51,286)( 52,285)( 53,284)( 54,283)( 55,271)( 56,273)
( 57,272)( 58,279)( 59,278)( 60,277)( 61,276)( 62,275)( 63,274)( 64,307)
( 65,309)( 66,308)( 67,315)( 68,314)( 69,313)( 70,312)( 71,311)( 72,310)
( 73,298)( 74,300)( 75,299)( 76,306)( 77,305)( 78,304)( 79,303)( 80,302)
( 81,301)( 82,289)( 83,291)( 84,290)( 85,297)( 86,296)( 87,295)( 88,294)
( 89,293)( 90,292)( 91,378)( 92,377)( 93,376)( 94,375)( 95,374)( 96,373)
( 97,372)( 98,371)( 99,370)(100,369)(101,368)(102,367)(103,366)(104,365)
(105,364)(106,363)(107,362)(108,361)(109,405)(110,404)(111,403)(112,402)
(113,401)(114,400)(115,399)(116,398)(117,397)(118,396)(119,395)(120,394)
(121,393)(122,392)(123,391)(124,390)(125,389)(126,388)(127,387)(128,386)
(129,385)(130,384)(131,383)(132,382)(133,381)(134,380)(135,379)(136,460)
(137,462)(138,461)(139,468)(140,467)(141,466)(142,465)(143,464)(144,463)
(145,451)(146,453)(147,452)(148,459)(149,458)(150,457)(151,456)(152,455)
(153,454)(154,487)(155,489)(156,488)(157,495)(158,494)(159,493)(160,492)
(161,491)(162,490)(163,478)(164,480)(165,479)(166,486)(167,485)(168,484)
(169,483)(170,482)(171,481)(172,469)(173,471)(174,470)(175,477)(176,476)
(177,475)(178,474)(179,473)(180,472)(181,415)(182,417)(183,416)(184,423)
(185,422)(186,421)(187,420)(188,419)(189,418)(190,406)(191,408)(192,407)
(193,414)(194,413)(195,412)(196,411)(197,410)(198,409)(199,442)(200,444)
(201,443)(202,450)(203,449)(204,448)(205,447)(206,446)(207,445)(208,433)
(209,435)(210,434)(211,441)(212,440)(213,439)(214,438)(215,437)(216,436)
(217,424)(218,426)(219,425)(220,432)(221,431)(222,430)(223,429)(224,428)
(225,427)(226,513)(227,512)(228,511)(229,510)(230,509)(231,508)(232,507)
(233,506)(234,505)(235,504)(236,503)(237,502)(238,501)(239,500)(240,499)
(241,498)(242,497)(243,496)(244,540)(245,539)(246,538)(247,537)(248,536)
(249,535)(250,534)(251,533)(252,532)(253,531)(254,530)(255,529)(256,528)
(257,527)(258,526)(259,525)(260,524)(261,523)(262,522)(263,521)(264,520)
(265,519)(266,518)(267,517)(268,516)(269,515)(270,514);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(540)!( 2, 3)( 4, 9)( 5, 8)( 6, 7)( 10, 37)( 11, 39)( 12, 38)
( 13, 45)( 14, 44)( 15, 43)( 16, 42)( 17, 41)( 18, 40)( 19, 28)( 20, 30)
( 21, 29)( 22, 36)( 23, 35)( 24, 34)( 25, 33)( 26, 32)( 27, 31)( 46, 99)
( 47, 98)( 48, 97)( 49, 96)( 50, 95)( 51, 94)( 52, 93)( 53, 92)( 54, 91)
( 55,135)( 56,134)( 57,133)( 58,132)( 59,131)( 60,130)( 61,129)( 62,128)
( 63,127)( 64,126)( 65,125)( 66,124)( 67,123)( 68,122)( 69,121)( 70,120)
( 71,119)( 72,118)( 73,117)( 74,116)( 75,115)( 76,114)( 77,113)( 78,112)
( 79,111)( 80,110)( 81,109)( 82,108)( 83,107)( 84,106)( 85,105)( 86,104)
( 87,103)( 88,102)( 89,101)( 90,100)(137,138)(139,144)(140,143)(141,142)
(145,172)(146,174)(147,173)(148,180)(149,179)(150,178)(151,177)(152,176)
(153,175)(154,163)(155,165)(156,164)(157,171)(158,170)(159,169)(160,168)
(161,167)(162,166)(181,234)(182,233)(183,232)(184,231)(185,230)(186,229)
(187,228)(188,227)(189,226)(190,270)(191,269)(192,268)(193,267)(194,266)
(195,265)(196,264)(197,263)(198,262)(199,261)(200,260)(201,259)(202,258)
(203,257)(204,256)(205,255)(206,254)(207,253)(208,252)(209,251)(210,250)
(211,249)(212,248)(213,247)(214,246)(215,245)(216,244)(217,243)(218,242)
(219,241)(220,240)(221,239)(222,238)(223,237)(224,236)(225,235)(271,406)
(272,408)(273,407)(274,414)(275,413)(276,412)(277,411)(278,410)(279,409)
(280,442)(281,444)(282,443)(283,450)(284,449)(285,448)(286,447)(287,446)
(288,445)(289,433)(290,435)(291,434)(292,441)(293,440)(294,439)(295,438)
(296,437)(297,436)(298,424)(299,426)(300,425)(301,432)(302,431)(303,430)
(304,429)(305,428)(306,427)(307,415)(308,417)(309,416)(310,423)(311,422)
(312,421)(313,420)(314,419)(315,418)(316,504)(317,503)(318,502)(319,501)
(320,500)(321,499)(322,498)(323,497)(324,496)(325,540)(326,539)(327,538)
(328,537)(329,536)(330,535)(331,534)(332,533)(333,532)(334,531)(335,530)
(336,529)(337,528)(338,527)(339,526)(340,525)(341,524)(342,523)(343,522)
(344,521)(345,520)(346,519)(347,518)(348,517)(349,516)(350,515)(351,514)
(352,513)(353,512)(354,511)(355,510)(356,509)(357,508)(358,507)(359,506)
(360,505)(361,459)(362,458)(363,457)(364,456)(365,455)(366,454)(367,453)
(368,452)(369,451)(370,495)(371,494)(372,493)(373,492)(374,491)(375,490)
(376,489)(377,488)(378,487)(379,486)(380,485)(381,484)(382,483)(383,482)
(384,481)(385,480)(386,479)(387,478)(388,477)(389,476)(390,475)(391,474)
(392,473)(393,472)(394,471)(395,470)(396,469)(397,468)(398,467)(399,466)
(400,465)(401,464)(402,463)(403,462)(404,461)(405,460);
s1 := Sym(540)!( 1,325)( 2,327)( 3,326)( 4,333)( 5,332)( 6,331)( 7,330)
( 8,329)( 9,328)( 10,316)( 11,318)( 12,317)( 13,324)( 14,323)( 15,322)
( 16,321)( 17,320)( 18,319)( 19,352)( 20,354)( 21,353)( 22,360)( 23,359)
( 24,358)( 25,357)( 26,356)( 27,355)( 28,343)( 29,345)( 30,344)( 31,351)
( 32,350)( 33,349)( 34,348)( 35,347)( 36,346)( 37,334)( 38,336)( 39,335)
( 40,342)( 41,341)( 42,340)( 43,339)( 44,338)( 45,337)( 46,280)( 47,282)
( 48,281)( 49,288)( 50,287)( 51,286)( 52,285)( 53,284)( 54,283)( 55,271)
( 56,273)( 57,272)( 58,279)( 59,278)( 60,277)( 61,276)( 62,275)( 63,274)
( 64,307)( 65,309)( 66,308)( 67,315)( 68,314)( 69,313)( 70,312)( 71,311)
( 72,310)( 73,298)( 74,300)( 75,299)( 76,306)( 77,305)( 78,304)( 79,303)
( 80,302)( 81,301)( 82,289)( 83,291)( 84,290)( 85,297)( 86,296)( 87,295)
( 88,294)( 89,293)( 90,292)( 91,378)( 92,377)( 93,376)( 94,375)( 95,374)
( 96,373)( 97,372)( 98,371)( 99,370)(100,369)(101,368)(102,367)(103,366)
(104,365)(105,364)(106,363)(107,362)(108,361)(109,405)(110,404)(111,403)
(112,402)(113,401)(114,400)(115,399)(116,398)(117,397)(118,396)(119,395)
(120,394)(121,393)(122,392)(123,391)(124,390)(125,389)(126,388)(127,387)
(128,386)(129,385)(130,384)(131,383)(132,382)(133,381)(134,380)(135,379)
(136,460)(137,462)(138,461)(139,468)(140,467)(141,466)(142,465)(143,464)
(144,463)(145,451)(146,453)(147,452)(148,459)(149,458)(150,457)(151,456)
(152,455)(153,454)(154,487)(155,489)(156,488)(157,495)(158,494)(159,493)
(160,492)(161,491)(162,490)(163,478)(164,480)(165,479)(166,486)(167,485)
(168,484)(169,483)(170,482)(171,481)(172,469)(173,471)(174,470)(175,477)
(176,476)(177,475)(178,474)(179,473)(180,472)(181,415)(182,417)(183,416)
(184,423)(185,422)(186,421)(187,420)(188,419)(189,418)(190,406)(191,408)
(192,407)(193,414)(194,413)(195,412)(196,411)(197,410)(198,409)(199,442)
(200,444)(201,443)(202,450)(203,449)(204,448)(205,447)(206,446)(207,445)
(208,433)(209,435)(210,434)(211,441)(212,440)(213,439)(214,438)(215,437)
(216,436)(217,424)(218,426)(219,425)(220,432)(221,431)(222,430)(223,429)
(224,428)(225,427)(226,513)(227,512)(228,511)(229,510)(230,509)(231,508)
(232,507)(233,506)(234,505)(235,504)(236,503)(237,502)(238,501)(239,500)
(240,499)(241,498)(242,497)(243,496)(244,540)(245,539)(246,538)(247,537)
(248,536)(249,535)(250,534)(251,533)(252,532)(253,531)(254,530)(255,529)
(256,528)(257,527)(258,526)(259,525)(260,524)(261,523)(262,522)(263,521)
(264,520)(265,519)(266,518)(267,517)(268,516)(269,515)(270,514);
poly := sub<Sym(540)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope