Polytope of Type {2,2,34}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,34}*272
if this polytope has a name.
Group : SmallGroup(272,53)
Rank : 4
Schlafli Type : {2,2,34}
Number of vertices, edges, etc : 2, 2, 34, 34
Order of s0s1s2s3 : 34
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,34,2} of size 544
   {2,2,34,4} of size 1088
   {2,2,34,6} of size 1632
Vertex Figure Of :
   {2,2,2,34} of size 544
   {3,2,2,34} of size 816
   {4,2,2,34} of size 1088
   {5,2,2,34} of size 1360
   {6,2,2,34} of size 1632
   {7,2,2,34} of size 1904
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,17}*136
   17-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,68}*544, {2,4,34}*544, {4,2,34}*544
   3-fold covers : {2,6,34}*816, {6,2,34}*816, {2,2,102}*816
   4-fold covers : {4,4,34}*1088, {2,4,68}*1088, {4,2,68}*1088, {2,8,34}*1088, {8,2,34}*1088, {2,2,136}*1088
   5-fold covers : {2,10,34}*1360, {10,2,34}*1360, {2,2,170}*1360
   6-fold covers : {2,12,34}*1632, {12,2,34}*1632, {2,6,68}*1632a, {6,2,68}*1632, {4,6,34}*1632a, {6,4,34}*1632, {2,2,204}*1632, {2,4,102}*1632a, {4,2,102}*1632
   7-fold covers : {2,14,34}*1904, {14,2,34}*1904, {2,2,238}*1904
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)
(27,28)(29,30)(31,32)(33,34)(35,36)(37,38);;
s3 := ( 5, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)(20,25)(22,23)
(24,29)(26,27)(28,33)(30,31)(32,37)(34,35)(36,38);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!(1,2);
s1 := Sym(38)!(3,4);
s2 := Sym(38)!( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38);
s3 := Sym(38)!( 5, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)(20,25)
(22,23)(24,29)(26,27)(28,33)(30,31)(32,37)(34,35)(36,38);
poly := sub<Sym(38)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope